"PTDN/vscode:/vscode.git/clone" did not exist on "d9549ce6a09dcf1e9d51ce865b929edc47e16921"
Unverified Commit 2ecefc39 authored by DarshanDeshpande's avatar DarshanDeshpande Committed by GitHub
Browse files

Add chat templating support for KeyDataset in text-generation pipeline (#30558)

* added chat templating support for keydataset in generation pipeline

* fixed and improved test

* fix formatting test failures

* Fix tests

* Fix tests
parent 0cdb6b3f
......@@ -8,6 +8,7 @@ from .base import Pipeline, build_pipeline_init_args
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from .pt_utils import KeyDataset
if is_tf_available():
import tensorflow as tf
......@@ -243,7 +244,9 @@ class TextGenerationPipeline(Pipeline):
- **generated_token_ids** (`torch.Tensor` or `tf.Tensor`, present when `return_tensors=True`) -- The token
ids of the generated text.
"""
if isinstance(text_inputs, (list, tuple)) and isinstance(text_inputs[0], (list, tuple, dict)):
if isinstance(
text_inputs, (list, tuple, KeyDataset) if is_torch_available() else (list, tuple)
) and isinstance(text_inputs[0], (list, tuple, dict)):
# We have one or more prompts in list-of-dicts format, so this is chat mode
if isinstance(text_inputs[0], dict):
return super().__call__(Chat(text_inputs), **kwargs)
......@@ -380,7 +383,8 @@ class TextGenerationPipeline(Pipeline):
if isinstance(prompt_text, str):
all_text = prompt_text + all_text
elif isinstance(prompt_text, Chat):
all_text = prompt_text.messages + [{"role": "assistant", "content": all_text}]
# Explicit list parsing is necessary for parsing chat datasets
all_text = list(prompt_text.messages) + [{"role": "assistant", "content": all_text}]
record = {"generated_text": all_text}
records.append(record)
......
......@@ -177,6 +177,48 @@ class TextGenerationPipelineTests(unittest.TestCase):
],
)
@require_torch
def test_small_chat_model_with_dataset_pt(self):
from torch.utils.data import Dataset
from transformers.pipelines.pt_utils import KeyDataset
class MyDataset(Dataset):
data = [
[
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
{"role": "assistant", "content": "This is a reply"},
],
]
def __len__(self):
return 1
def __getitem__(self, i):
return {"text": self.data[i]}
text_generator = pipeline(
task="text-generation", model="rocketknight1/tiny-gpt2-with-chatml-template", framework="pt"
)
dataset = MyDataset()
key_dataset = KeyDataset(dataset, "text")
for outputs in text_generator(key_dataset, do_sample=False, max_new_tokens=10):
expected_chat = dataset.data[0] + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
self.assertEqual(
outputs,
[
{"generated_text": expected_chat},
],
)
@require_tf
def test_small_model_tf(self):
text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment