"vscode:/vscode.git/clone" did not exist on "64affab49520af0b4b5250027d81c1f5e6b5ef68"
Unverified Commit 2bf70e21 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Fix reproducible tests in Trainer (#7119)

* Fix reproducible tests in Trainer

* Deal with multiple GPUs
parent 9e89390c
...@@ -4,7 +4,7 @@ import datasets ...@@ -4,7 +4,7 @@ import datasets
import numpy as np import numpy as np
from transformers import AutoTokenizer, TrainingArguments, is_torch_available from transformers import AutoTokenizer, TrainingArguments, is_torch_available
from transformers.testing_utils import get_tests_dir, require_non_multigpu, require_torch from transformers.testing_utils import get_tests_dir, require_torch
if is_torch_available(): if is_torch_available():
...@@ -94,25 +94,24 @@ if is_torch_available(): ...@@ -94,25 +94,24 @@ if is_torch_available():
@require_torch @require_torch
class TrainerIntegrationTest(unittest.TestCase): class TrainerIntegrationTest(unittest.TestCase):
def check_trained_model(self, model, alternate_seed=False):
# Checks a training seeded with learning_rate = 0.1
if alternate_seed:
# With args.seed = 314
self.assertTrue(torch.abs(model.a - 1.0171) < 1e-4)
self.assertTrue(torch.abs(model.b - 1.2494) < 1e-4)
else:
# With default args.seed
self.assertTrue(torch.abs(model.a - 0.6975) < 1e-4)
self.assertTrue(torch.abs(model.b - 1.2415) < 1e-4)
def setUp(self): def setUp(self):
# Get the default values (in case they change):
args = TrainingArguments(".") args = TrainingArguments(".")
self.n_epochs = args.num_train_epochs self.n_epochs = args.num_train_epochs
self.batch_size = args.per_device_train_batch_size self.batch_size = args.train_batch_size
trainer = get_regression_trainer(learning_rate=0.1)
trainer.train()
self.default_trained_model = (trainer.model.a, trainer.model.b)
trainer = get_regression_trainer(learning_rate=0.1, seed=314)
trainer.train()
self.alternate_trained_model = (trainer.model.a, trainer.model.b)
def check_trained_model(self, model, alternate_seed=False):
# Checks a training seeded with learning_rate = 0.1
(a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
self.assertTrue(torch.allclose(model.a, a))
self.assertTrue(torch.allclose(model.b, b))
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_reproducible_training(self): def test_reproducible_training(self):
# Checks that training worked, model trained and seed made a reproducible training. # Checks that training worked, model trained and seed made a reproducible training.
trainer = get_regression_trainer(learning_rate=0.1) trainer = get_regression_trainer(learning_rate=0.1)
...@@ -124,7 +123,6 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -124,7 +123,6 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer.train() trainer.train()
self.check_trained_model(trainer.model, alternate_seed=True) self.check_trained_model(trainer.model, alternate_seed=True)
@require_non_multigpu
def test_number_of_steps_in_training(self): def test_number_of_steps_in_training(self):
# Regular training has n_epochs * len(train_dl) steps # Regular training has n_epochs * len(train_dl) steps
trainer = get_regression_trainer(learning_rate=0.1) trainer = get_regression_trainer(learning_rate=0.1)
...@@ -141,19 +139,19 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -141,19 +139,19 @@ class TrainerIntegrationTest(unittest.TestCase):
train_output = trainer.train() train_output = trainer.train()
self.assertEqual(train_output.global_step, 10) self.assertEqual(train_output.global_step, 10)
@require_non_multigpu
def test_train_and_eval_dataloaders(self): def test_train_and_eval_dataloaders(self):
n_gpu = max(1, torch.cuda.device_count())
trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16) trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
self.assertEqual(trainer.get_train_dataloader().batch_size, 16) self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16) trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
self.assertEqual(trainer.get_eval_dataloader().batch_size, 16) self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
# Check drop_last works # Check drop_last works
trainer = get_regression_trainer( trainer = get_regression_trainer(
train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32 train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
) )
self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16 + 1) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32 + 1) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
trainer = get_regression_trainer( trainer = get_regression_trainer(
train_len=66, train_len=66,
...@@ -163,12 +161,12 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -163,12 +161,12 @@ class TrainerIntegrationTest(unittest.TestCase):
per_device_eval_batch_size=32, per_device_eval_batch_size=32,
dataloader_drop_last=True, dataloader_drop_last=True,
) )
self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16) self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32) self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
# Check passing a new dataset fpr evaluation wors # Check passing a new dataset for evaluation wors
new_eval_dataset = RegressionDataset(length=128) new_eval_dataset = RegressionDataset(length=128)
self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // 32) self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
def test_evaluate(self): def test_evaluate(self):
trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy()) trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
...@@ -204,8 +202,6 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -204,8 +202,6 @@ class TrainerIntegrationTest(unittest.TestCase):
x = trainer.eval_dataset.x x = trainer.eval_dataset.x
self.assertTrue(np.allclose(preds, 1.5 * x + 2.5)) self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_trainer_with_datasets(self): def test_trainer_with_datasets(self):
np.random.seed(42) np.random.seed(42)
x = np.random.normal(size=(64,)).astype(np.float32) x = np.random.normal(size=(64,)).astype(np.float32)
...@@ -234,8 +230,6 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -234,8 +230,6 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer.train() trainer.train()
self.check_trained_model(trainer.model) self.check_trained_model(trainer.model)
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_custom_optimizer(self): def test_custom_optimizer(self):
train_dataset = RegressionDataset() train_dataset = RegressionDataset()
args = TrainingArguments("./regression") args = TrainingArguments("./regression")
...@@ -245,12 +239,11 @@ class TrainerIntegrationTest(unittest.TestCase): ...@@ -245,12 +239,11 @@ class TrainerIntegrationTest(unittest.TestCase):
trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler)) trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
trainer.train() trainer.train()
self.assertTrue(torch.abs(trainer.model.a - 1.8950) < 1e-4) (a, b) = self.default_trained_model
self.assertTrue(torch.abs(trainer.model.b - 2.5656) < 1e-4) self.assertFalse(torch.allclose(trainer.model.a, a))
self.assertFalse(torch.allclose(trainer.model.b, b))
self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0) self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)
@require_non_multigpu
@unittest.skip("Change in seed by external dependency causing this test to fail.")
def test_model_init(self): def test_model_init(self):
train_dataset = RegressionDataset() train_dataset = RegressionDataset()
args = TrainingArguments("./regression", learning_rate=0.1) args = TrainingArguments("./regression", learning_rate=0.1)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment