Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
2a667b1e
"examples/vscode:/vscode.git/clone" did not exist on "31fbcf4160e973d8a16d5e32ad6992b6c645a88c"
Commit
2a667b1e
authored
Sep 05, 2019
by
thomwolf
Browse files
split configuration and modeling files
parent
0be6a2a6
Changes
33
Hide whitespace changes
Inline
Side-by-side
Showing
13 changed files
with
91 additions
and
323 deletions
+91
-323
pytorch_transformers/modeling_xlm.py
pytorch_transformers/modeling_xlm.py
+3
-163
pytorch_transformers/modeling_xlnet.py
pytorch_transformers/modeling_xlnet.py
+3
-148
pytorch_transformers/tests/configuration_common_test.py
pytorch_transformers/tests/configuration_common_test.py
+63
-0
pytorch_transformers/tests/modeling_auto_test.py
pytorch_transformers/tests/modeling_auto_test.py
+2
-1
pytorch_transformers/tests/modeling_bert_test.py
pytorch_transformers/tests/modeling_bert_test.py
+2
-1
pytorch_transformers/tests/modeling_common_test.py
pytorch_transformers/tests/modeling_common_test.py
+3
-3
pytorch_transformers/tests/modeling_distilbert_test.py
pytorch_transformers/tests/modeling_distilbert_test.py
+3
-1
pytorch_transformers/tests/modeling_gpt2_test.py
pytorch_transformers/tests/modeling_gpt2_test.py
+2
-1
pytorch_transformers/tests/modeling_openai_test.py
pytorch_transformers/tests/modeling_openai_test.py
+2
-1
pytorch_transformers/tests/modeling_roberta_test.py
pytorch_transformers/tests/modeling_roberta_test.py
+2
-1
pytorch_transformers/tests/modeling_transfo_xl_test.py
pytorch_transformers/tests/modeling_transfo_xl_test.py
+2
-1
pytorch_transformers/tests/modeling_xlm_test.py
pytorch_transformers/tests/modeling_xlm_test.py
+2
-1
pytorch_transformers/tests/modeling_xlnet_test.py
pytorch_transformers/tests/modeling_xlnet_test.py
+2
-1
No files found.
pytorch_transformers/modeling_xlm.py
View file @
2a667b1e
...
...
@@ -16,11 +16,8 @@
"""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
import
json
import
logging
import
math
import
sys
from
io
import
open
import
itertools
import
numpy
as
np
...
...
@@ -30,8 +27,9 @@ from torch import nn
from
torch.nn
import
functional
as
F
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
.modeling_utils
import
(
PretrainedConfig
,
PreTrainedModel
,
add_start_docstrings
,
prune_linear_layer
,
SequenceSummary
,
SQuADHead
)
from
.modeling_utils
import
PreTrainedModel
,
prune_linear_layer
,
SequenceSummary
,
SQuADHead
from
.configuration_xlm
import
XLMConfig
from
.file_utils
import
add_start_docstrings
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -47,164 +45,6 @@ XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
'xlm-mlm-17-1280'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.bin"
,
'xlm-mlm-100-1280'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-pytorch_model.bin"
,
}
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
=
{
'xlm-mlm-en-2048'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json"
,
'xlm-mlm-ende-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-config.json"
,
'xlm-mlm-enfr-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-config.json"
,
'xlm-mlm-enro-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-config.json"
,
'xlm-mlm-tlm-xnli15-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-config.json"
,
'xlm-mlm-xnli15-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-config.json"
,
'xlm-clm-enfr-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-config.json"
,
'xlm-clm-ende-1024'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-config.json"
,
'xlm-mlm-17-1280'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-config.json"
,
'xlm-mlm-100-1280'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-config.json"
,
}
class
XLMConfig
(
PretrainedConfig
):
"""Configuration class to store the configuration of a `XLMModel`.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
d_model: Size of the encoder layers and the pooler layer.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
d_inner: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
ff_activation: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
untie_r: untie relative position biases
attn_type: 'bi' for XLM, 'uni' for Transformer-XL
dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
init_std: float, initialize the parameters with a normal distribution
with mean 0 and stddev init_std. Only effective when init="normal".
mem_len: int, the number of tokens to cache.
reuse_len: int, the number of tokens in the currect batch to be cached
and reused in the future.
bi_data: bool, whether to use bidirectional input pipeline.
Usually set to True during pretraining and False during finetuning.
clamp_len: int, clamp all relative distances larger than clamp_len.
-1 means no clamping.
same_length: bool, whether to use the same attention length for each token.
"""
pretrained_config_archive_map
=
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
def
__init__
(
self
,
vocab_size_or_config_json_file
=
30145
,
emb_dim
=
2048
,
n_layers
=
12
,
n_heads
=
16
,
dropout
=
0.1
,
attention_dropout
=
0.1
,
gelu_activation
=
True
,
sinusoidal_embeddings
=
False
,
causal
=
False
,
asm
=
False
,
n_langs
=
1
,
use_lang_emb
=
True
,
max_position_embeddings
=
512
,
embed_init_std
=
2048
**
-
0.5
,
layer_norm_eps
=
1e-12
,
init_std
=
0.02
,
bos_index
=
0
,
eos_index
=
1
,
pad_index
=
2
,
unk_index
=
3
,
mask_index
=
5
,
is_encoder
=
True
,
finetuning_task
=
None
,
num_labels
=
2
,
summary_type
=
'first'
,
summary_use_proj
=
True
,
summary_activation
=
None
,
summary_proj_to_labels
=
True
,
summary_first_dropout
=
0.1
,
start_n_top
=
5
,
end_n_top
=
5
,
**
kwargs
):
"""Constructs XLMConfig.
"""
super
(
XLMConfig
,
self
).
__init__
(
**
kwargs
)
if
isinstance
(
vocab_size_or_config_json_file
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
and
isinstance
(
vocab_size_or_config_json_file
,
unicode
)):
with
open
(
vocab_size_or_config_json_file
,
"r"
,
encoding
=
'utf-8'
)
as
reader
:
json_config
=
json
.
loads
(
reader
.
read
())
for
key
,
value
in
json_config
.
items
():
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
n_words
=
vocab_size_or_config_json_file
self
.
emb_dim
=
emb_dim
self
.
n_layers
=
n_layers
self
.
n_heads
=
n_heads
self
.
dropout
=
dropout
self
.
attention_dropout
=
attention_dropout
self
.
gelu_activation
=
gelu_activation
self
.
sinusoidal_embeddings
=
sinusoidal_embeddings
self
.
causal
=
causal
self
.
asm
=
asm
self
.
n_langs
=
n_langs
self
.
use_lang_emb
=
use_lang_emb
self
.
layer_norm_eps
=
layer_norm_eps
self
.
bos_index
=
bos_index
self
.
eos_index
=
eos_index
self
.
pad_index
=
pad_index
self
.
unk_index
=
unk_index
self
.
mask_index
=
mask_index
self
.
is_encoder
=
is_encoder
self
.
max_position_embeddings
=
max_position_embeddings
self
.
embed_init_std
=
embed_init_std
self
.
init_std
=
init_std
self
.
finetuning_task
=
finetuning_task
self
.
num_labels
=
num_labels
self
.
summary_type
=
summary_type
self
.
summary_use_proj
=
summary_use_proj
self
.
summary_activation
=
summary_activation
self
.
summary_proj_to_labels
=
summary_proj_to_labels
self
.
summary_first_dropout
=
summary_first_dropout
self
.
start_n_top
=
start_n_top
self
.
end_n_top
=
end_n_top
else
:
raise
ValueError
(
"First argument must be either a vocabulary size (int)"
" or the path to a pretrained model config file (str)"
)
@
property
def
vocab_size
(
self
):
return
self
.
n_words
@
vocab_size
.
setter
def
vocab_size
(
self
,
value
):
self
.
n_words
=
value
@
property
def
hidden_size
(
self
):
return
self
.
emb_dim
@
property
def
num_attention_heads
(
self
):
return
self
.
n_heads
@
property
def
num_hidden_layers
(
self
):
return
self
.
n_layers
def
create_sinusoidal_embeddings
(
n_pos
,
dim
,
out
):
...
...
pytorch_transformers/modeling_xlnet.py
View file @
2a667b1e
...
...
@@ -29,9 +29,9 @@ from torch import nn
from
torch.nn
import
functional
as
F
from
torch.nn
import
CrossEntropyLoss
,
MSELoss
from
.modeling_utils
import
(
CONFIG_NAME
,
WEIGHTS_NAME
,
Pre
t
rained
Config
,
PreTrainedModel
,
SequenceSummary
,
PoolerAnswerClass
,
PoolerEndLogits
,
PoolerStartLogits
,
add_start_docstrings
)
from
.modeling_utils
import
Pre
T
rained
Model
,
prune_linear_layer
,
SequenceSummary
,
PoolerAnswerClass
,
PoolerEndLogits
,
PoolerStartLogits
from
.configuration_xlnet
import
XLNetConfig
from
.file_utils
import
add_start_docstrings
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -40,10 +40,6 @@ XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
'xlnet-base-cased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-pytorch_model.bin"
,
'xlnet-large-cased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin"
,
}
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
=
{
'xlnet-base-cased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-base-cased-config.json"
,
'xlnet-large-cased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json"
,
}
def
build_tf_xlnet_to_pytorch_map
(
model
,
config
,
tf_weights
=
None
):
...
...
@@ -192,147 +188,6 @@ def swish(x):
ACT2FN
=
{
"gelu"
:
gelu
,
"relu"
:
torch
.
nn
.
functional
.
relu
,
"swish"
:
swish
}
class
XLNetConfig
(
PretrainedConfig
):
"""Configuration class to store the configuration of a ``XLNetModel``.
Args:
vocab_size_or_config_json_file: Vocabulary size of ``inputs_ids`` in ``XLNetModel``.
d_model: Size of the encoder layers and the pooler layer.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
d_inner: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
ff_activation: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
untie_r: untie relative position biases
attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
dropout: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
dropatt: The dropout ratio for the attention
probabilities.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
layer_norm_eps: The epsilon used by LayerNorm.
dropout: float, dropout rate.
dropatt: float, dropout rate on attention probabilities.
init: str, the initialization scheme, either "normal" or "uniform".
init_range: float, initialize the parameters with a uniform distribution
in [-init_range, init_range]. Only effective when init="uniform".
init_std: float, initialize the parameters with a normal distribution
with mean 0 and stddev init_std. Only effective when init="normal".
mem_len: int, the number of tokens to cache.
reuse_len: int, the number of tokens in the currect batch to be cached
and reused in the future.
bi_data: bool, whether to use bidirectional input pipeline.
Usually set to True during pretraining and False during finetuning.
clamp_len: int, clamp all relative distances larger than clamp_len.
-1 means no clamping.
same_length: bool, whether to use the same attention length for each token.
finetuning_task: name of the glue task on which the model was fine-tuned if any
"""
pretrained_config_archive_map
=
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
def
__init__
(
self
,
vocab_size_or_config_json_file
=
32000
,
d_model
=
1024
,
n_layer
=
24
,
n_head
=
16
,
d_inner
=
4096
,
ff_activation
=
"gelu"
,
untie_r
=
True
,
attn_type
=
"bi"
,
initializer_range
=
0.02
,
layer_norm_eps
=
1e-12
,
dropout
=
0.1
,
mem_len
=
None
,
reuse_len
=
None
,
bi_data
=
False
,
clamp_len
=-
1
,
same_length
=
False
,
finetuning_task
=
None
,
num_labels
=
2
,
summary_type
=
'last'
,
summary_use_proj
=
True
,
summary_activation
=
'tanh'
,
summary_last_dropout
=
0.1
,
start_n_top
=
5
,
end_n_top
=
5
,
**
kwargs
):
"""Constructs XLNetConfig.
"""
super
(
XLNetConfig
,
self
).
__init__
(
**
kwargs
)
if
isinstance
(
vocab_size_or_config_json_file
,
str
)
or
(
sys
.
version_info
[
0
]
==
2
and
isinstance
(
vocab_size_or_config_json_file
,
unicode
)):
with
open
(
vocab_size_or_config_json_file
,
"r"
,
encoding
=
'utf-8'
)
as
reader
:
json_config
=
json
.
loads
(
reader
.
read
())
for
key
,
value
in
json_config
.
items
():
self
.
__dict__
[
key
]
=
value
elif
isinstance
(
vocab_size_or_config_json_file
,
int
):
self
.
n_token
=
vocab_size_or_config_json_file
self
.
d_model
=
d_model
self
.
n_layer
=
n_layer
self
.
n_head
=
n_head
assert
d_model
%
n_head
==
0
self
.
d_head
=
d_model
//
n_head
self
.
ff_activation
=
ff_activation
self
.
d_inner
=
d_inner
self
.
untie_r
=
untie_r
self
.
attn_type
=
attn_type
self
.
initializer_range
=
initializer_range
self
.
layer_norm_eps
=
layer_norm_eps
self
.
dropout
=
dropout
self
.
mem_len
=
mem_len
self
.
reuse_len
=
reuse_len
self
.
bi_data
=
bi_data
self
.
clamp_len
=
clamp_len
self
.
same_length
=
same_length
self
.
finetuning_task
=
finetuning_task
self
.
num_labels
=
num_labels
self
.
summary_type
=
summary_type
self
.
summary_use_proj
=
summary_use_proj
self
.
summary_activation
=
summary_activation
self
.
summary_last_dropout
=
summary_last_dropout
self
.
start_n_top
=
start_n_top
self
.
end_n_top
=
end_n_top
else
:
raise
ValueError
(
"First argument must be either a vocabulary size (int)"
" or the path to a pretrained model config file (str)"
)
@
property
def
max_position_embeddings
(
self
):
return
-
1
@
property
def
vocab_size
(
self
):
return
self
.
n_token
@
vocab_size
.
setter
def
vocab_size
(
self
,
value
):
self
.
n_token
=
value
@
property
def
hidden_size
(
self
):
return
self
.
d_model
@
property
def
num_attention_heads
(
self
):
return
self
.
n_head
@
property
def
num_hidden_layers
(
self
):
return
self
.
n_layer
try
:
from
apex.normalization.fused_layer_norm
import
FusedLayerNorm
as
XLNetLayerNorm
except
(
ImportError
,
AttributeError
)
as
e
:
...
...
pytorch_transformers/tests/configuration_common_test.py
0 → 100644
View file @
2a667b1e
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
copy
import
os
import
shutil
import
json
import
random
import
uuid
import
unittest
import
logging
class
ConfigTester
(
object
):
def
__init__
(
self
,
parent
,
config_class
=
None
,
**
kwargs
):
self
.
parent
=
parent
self
.
config_class
=
config_class
self
.
inputs_dict
=
kwargs
def
create_and_test_config_common_properties
(
self
):
config
=
self
.
config_class
(
**
self
.
inputs_dict
)
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'vocab_size'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'hidden_size'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'num_attention_heads'
))
self
.
parent
.
assertTrue
(
hasattr
(
config
,
'num_hidden_layers'
))
def
create_and_test_config_to_json_string
(
self
):
config
=
self
.
config_class
(
**
self
.
inputs_dict
)
obj
=
json
.
loads
(
config
.
to_json_string
())
for
key
,
value
in
self
.
inputs_dict
.
items
():
self
.
parent
.
assertEqual
(
obj
[
key
],
value
)
def
create_and_test_config_to_json_file
(
self
):
config_first
=
self
.
config_class
(
**
self
.
inputs_dict
)
json_file_path
=
os
.
path
.
join
(
os
.
getcwd
(),
"config_"
+
str
(
uuid
.
uuid4
())
+
".json"
)
config_first
.
to_json_file
(
json_file_path
)
config_second
=
self
.
config_class
.
from_json_file
(
json_file_path
)
os
.
remove
(
json_file_path
)
self
.
parent
.
assertEqual
(
config_second
.
to_dict
(),
config_first
.
to_dict
())
def
run_common_tests
(
self
):
self
.
create_and_test_config_common_properties
()
self
.
create_and_test_config_to_json_string
()
self
.
create_and_test_config_to_json_file
()
if
__name__
==
"__main__"
:
unittest
.
main
()
\ No newline at end of file
pytorch_transformers/tests/modeling_auto_test.py
View file @
2a667b1e
...
...
@@ -28,7 +28,8 @@ from pytorch_transformers import (AutoConfig, BertConfig,
AutoModelForQuestionAnswering
,
BertForQuestionAnswering
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ConfigTester
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
AutoModelTest
(
unittest
.
TestCase
):
...
...
pytorch_transformers/tests/modeling_bert_test.py
View file @
2a667b1e
...
...
@@ -26,7 +26,8 @@ from pytorch_transformers import (BertConfig, BertModel, BertForMaskedLM,
BertForTokenClassification
,
BertForMultipleChoice
)
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ConfigTester
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
BertModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_common_test.py
View file @
2a667b1e
...
...
@@ -28,9 +28,9 @@ import logging
import
torch
from
pytorch_transformers
import
PretrainedConfig
,
PreTrainedModel
from
pytorch_transformers.modeling_bert
import
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers.modeling_gpt2
import
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
from
pytorch_transformers
import
(
PretrainedConfig
,
PreTrainedModel
,
BertModel
,
BertConfig
,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2Config
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
def
_config_zero_init
(
config
):
...
...
pytorch_transformers/tests/modeling_distilbert_test.py
View file @
2a667b1e
...
...
@@ -18,13 +18,15 @@ from __future__ import print_function
import
unittest
import
shutil
import
sys
import
pytest
from
pytorch_transformers
import
(
DistilBertConfig
,
DistilBertModel
,
DistilBertForMaskedLM
,
DistilBertForQuestionAnswering
,
DistilBertForSequenceClassification
)
from
pytorch_transformers.modeling_distilbert
import
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ConfigTester
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
DistilBertModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_gpt2_test.py
View file @
2a667b1e
...
...
@@ -24,7 +24,8 @@ import shutil
from
pytorch_transformers
import
(
GPT2Config
,
GPT2Model
,
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
)
from
.modeling_common_test
import
CommonTestCases
,
ConfigTester
,
ids_tensor
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
GPT2ModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_openai_test.py
View file @
2a667b1e
...
...
@@ -24,7 +24,8 @@ import shutil
from
pytorch_transformers
import
(
OpenAIGPTConfig
,
OpenAIGPTModel
,
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
,
OpenAIGPTLMHeadModel
,
OpenAIGPTDoubleHeadsModel
)
from
.modeling_common_test
import
CommonTestCases
,
ConfigTester
,
ids_tensor
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
OpenAIGPTModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_roberta_test.py
View file @
2a667b1e
...
...
@@ -24,7 +24,8 @@ import torch
from
pytorch_transformers
import
(
RobertaConfig
,
RobertaModel
,
RobertaForMaskedLM
,
RobertaForSequenceClassification
)
from
pytorch_transformers.modeling_roberta
import
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ConfigTester
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
RobertaModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_transfo_xl_test.py
View file @
2a667b1e
...
...
@@ -28,7 +28,8 @@ import torch
from
pytorch_transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
from
pytorch_transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
ConfigTester
,
CommonTestCases
,
ids_tensor
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
TransfoXLModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_xlm_test.py
View file @
2a667b1e
...
...
@@ -23,7 +23,8 @@ import pytest
from
pytorch_transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
)
from
pytorch_transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
(
CommonTestCases
,
ConfigTester
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
XLMModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
pytorch_transformers/tests/modeling_xlnet_test.py
View file @
2a667b1e
...
...
@@ -28,7 +28,8 @@ import torch
from
pytorch_transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
from
pytorch_transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
from
.modeling_common_test
import
ConfigTester
,
CommonTestCases
,
ids_tensor
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
XLNetModelTest
(
CommonTestCases
.
CommonModelTester
):
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment