Unverified Commit 28d183c9 authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Allow soft dependencies in the namespace with ImportErrors at use (#7537)

* PoC on RAG

* Format class name/obj name

* Better name in message

* PoC on one TF model

* Add PyTorch and TF dummy objects + script

* Treat scikit-learn

* Bad copy pastes

* Typo
parent 1a00f46c
...@@ -248,6 +248,7 @@ jobs: ...@@ -248,6 +248,7 @@ jobs:
- run: isort --check-only examples templates tests src utils - run: isort --check-only examples templates tests src utils
- run: flake8 examples templates tests src utils - run: flake8 examples templates tests src utils
- run: python utils/check_copies.py - run: python utils/check_copies.py
- run: python utils/check_dummies.py
- run: python utils/check_repo.py - run: python utils/check_repo.py
check_repository_consistency: check_repository_consistency:
working_directory: ~/transformers working_directory: ~/transformers
......
...@@ -23,6 +23,7 @@ modified_only_fixup: ...@@ -23,6 +23,7 @@ modified_only_fixup:
extra_quality_checks: extra_quality_checks:
python utils/check_copies.py python utils/check_copies.py
python utils/check_dummies.py
python utils/check_repo.py python utils/check_repo.py
# this target runs checks on all files # this target runs checks on all files
...@@ -46,6 +47,7 @@ fixup: modified_only_fixup extra_quality_checks ...@@ -46,6 +47,7 @@ fixup: modified_only_fixup extra_quality_checks
fix-copies: fix-copies:
python utils/check_copies.py --fix_and_overwrite python utils/check_copies.py --fix_and_overwrite
python utils/check_dummies.py --fix_and_overwrite
# Run tests for the library # Run tests for the library
......
...@@ -73,12 +73,13 @@ from .data import ( ...@@ -73,12 +73,13 @@ from .data import (
SquadFeatures, SquadFeatures,
SquadV1Processor, SquadV1Processor,
SquadV2Processor, SquadV2Processor,
glue_compute_metrics,
glue_convert_examples_to_features, glue_convert_examples_to_features,
glue_output_modes, glue_output_modes,
glue_processors, glue_processors,
glue_tasks_num_labels, glue_tasks_num_labels,
is_sklearn_available,
squad_convert_examples_to_features, squad_convert_examples_to_features,
xnli_compute_metrics,
xnli_output_modes, xnli_output_modes,
xnli_processors, xnli_processors,
xnli_tasks_num_labels, xnli_tasks_num_labels,
...@@ -102,6 +103,7 @@ from .file_utils import ( ...@@ -102,6 +103,7 @@ from .file_utils import (
is_faiss_available, is_faiss_available,
is_psutil_available, is_psutil_available,
is_py3nvml_available, is_py3nvml_available,
is_sklearn_available,
is_tf_available, is_tf_available,
is_torch_available, is_torch_available,
is_torch_tpu_available, is_torch_tpu_available,
...@@ -212,10 +214,6 @@ from .utils import logging ...@@ -212,10 +214,6 @@ from .utils import logging
logger = logging.get_logger(__name__) # pylint: disable=invalid-name logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_sklearn_available():
from .data import glue_compute_metrics, xnli_compute_metrics
# Modeling # Modeling
if is_torch_available(): if is_torch_available():
# Benchmarks # Benchmarks
...@@ -531,6 +529,8 @@ if is_torch_available(): ...@@ -531,6 +529,8 @@ if is_torch_available():
# Trainer # Trainer
from .trainer import EvalPrediction, Trainer, set_seed, torch_distributed_zero_first from .trainer import EvalPrediction, Trainer, set_seed, torch_distributed_zero_first
else:
from .utils.dummy_pt_objects import *
# TensorFlow # TensorFlow
if is_tf_available(): if is_tf_available():
...@@ -753,6 +753,11 @@ if is_tf_available(): ...@@ -753,6 +753,11 @@ if is_tf_available():
# Trainer # Trainer
from .trainer_tf import TFTrainer from .trainer_tf import TFTrainer
else:
# Import the same objects as dummies to get them in the namespace.
# They will raise an import error if the user tries to instantiate / use them.
from .utils.dummy_tf_objects import *
if not is_tf_available() and not is_torch_available(): if not is_tf_available() and not is_torch_available():
logger.warning( logger.warning(
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
# There's no way to ignore "F401 '...' imported but unused" warnings in this # There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all. # module, but to preserve other warnings. So, don't check this module at all.
from .metrics import is_sklearn_available from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import ( from .processors import (
DataProcessor, DataProcessor,
InputExample, InputExample,
...@@ -21,7 +21,3 @@ from .processors import ( ...@@ -21,7 +21,3 @@ from .processors import (
xnli_processors, xnli_processors,
xnli_tasks_num_labels, xnli_tasks_num_labels,
) )
if is_sklearn_available():
from .metrics import glue_compute_metrics, xnli_compute_metrics
...@@ -14,77 +14,75 @@ ...@@ -14,77 +14,75 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
try: from ...file_utils import is_sklearn_available, requires_sklearn
if is_sklearn_available():
from sklearn.metrics import f1_score, matthews_corrcoef from sklearn.metrics import f1_score, matthews_corrcoef
from scipy.stats import pearsonr, spearmanr from scipy.stats import pearsonr, spearmanr
_has_sklearn = True
except (AttributeError, ImportError):
_has_sklearn = False
def simple_accuracy(preds, labels):
requires_sklearn(simple_accuracy)
return (preds == labels).mean()
def is_sklearn_available():
return _has_sklearn
def acc_and_f1(preds, labels):
requires_sklearn(acc_and_f1)
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
if _has_sklearn:
def simple_accuracy(preds, labels): def pearson_and_spearman(preds, labels):
return (preds == labels).mean() requires_sklearn(pearson_and_spearman)
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels): def glue_compute_metrics(task_name, preds, labels):
pearson_corr = pearsonr(preds, labels)[0] requires_sklearn(glue_compute_metrics)
spearman_corr = spearmanr(preds, labels)[0] assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
return { if task_name == "cola":
"pearson": pearson_corr, return {"mcc": matthews_corrcoef(labels, preds)}
"spearmanr": spearman_corr, elif task_name == "sst-2":
"corr": (pearson_corr + spearman_corr) / 2, return {"acc": simple_accuracy(preds, labels)}
} elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "hans":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
def glue_compute_metrics(task_name, preds, labels):
assert len(preds) == len(
labels
), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "hans":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
def xnli_compute_metrics(task_name, preds, labels): def xnli_compute_metrics(task_name, preds, labels):
assert len(preds) == len( requires_sklearn(xnli_compute_metrics)
labels assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}"
), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}" if task_name == "xnli":
if task_name == "xnli": return {"acc": simple_accuracy(preds, labels)}
return {"acc": simple_accuracy(preds, labels)} else:
else: raise KeyError(task_name)
raise KeyError(task_name)
...@@ -133,6 +133,15 @@ try: ...@@ -133,6 +133,15 @@ try:
except ImportError: except ImportError:
_faiss_available = False _faiss_available = False
try:
import sklearn.metrics # noqa: F401
import scipy.stats # noqa: F401
_has_sklearn = True
except (AttributeError, ImportError):
_has_sklearn = False
default_cache_path = os.path.join(torch_cache_home, "transformers") default_cache_path = os.path.join(torch_cache_home, "transformers")
...@@ -194,6 +203,88 @@ def is_faiss_available(): ...@@ -194,6 +203,88 @@ def is_faiss_available():
return _faiss_available return _faiss_available
def is_sklearn_available():
return _has_sklearn
DATASETS_IMPORT_ERROR = """
{0} requires the 🤗 Datasets library but it was not found in your enviromnent. You can install it with:
```
pip install datasets
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install datasets
```
then restarting your kernel.
Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
that python file if that's the case.
"""
FAISS_IMPORT_ERROR = """
{0} requires the faiss library but it was not found in your enviromnent. Checkout the instructions on the
installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
that match your enviromnent.
"""
PYTORCH_IMPORT_ERROR = """
{0} requires the PyTorch library but it was not found in your enviromnent. Checkout the instructions on the
installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your enviromnent.
"""
SKLEARN_IMPORT_ERROR = """
{0} requires the scikit-learn library but it was not found in your enviromnent. You can install it with:
```
pip install -U scikit-learn
```
In a notebook or a colab, you can install it by executing a cell with
```
!pip install -U scikit-learn
```
"""
TENSORFLOW_IMPORT_ERROR = """
{0} requires the TensorFlow library but it was not found in your enviromnent. Checkout the instructions on the
installation page: https://www.tensorflow.org/install and follow the ones that match your enviromnent.
"""
def requires_datasets(obj):
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
if not is_datasets_available():
raise ImportError(DATASETS_IMPORT_ERROR.format(name))
def requires_faiss(obj):
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
if not is_faiss_available():
raise ImportError(FAISS_IMPORT_ERROR.format(name))
def requires_pytorch(obj):
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
if not is_torch_available():
raise ImportError(PYTORCH_IMPORT_ERROR.format(name))
def requires_sklearn(obj):
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
if not is_sklearn_available():
raise ImportError(SKLEARN_IMPORT_ERROR.format(name))
def requires_tf(obj):
name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
if not is_tf_available():
raise ImportError(TENSORFLOW_IMPORT_ERROR.format(name))
def add_start_docstrings(*docstr): def add_start_docstrings(*docstr):
def docstring_decorator(fn): def docstring_decorator(fn):
fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
......
...@@ -22,15 +22,23 @@ from typing import Iterable, List, Optional, Tuple ...@@ -22,15 +22,23 @@ from typing import Iterable, List, Optional, Tuple
import numpy as np import numpy as np
from .configuration_rag import RagConfig from .configuration_rag import RagConfig
from .file_utils import cached_path, is_datasets_available, is_faiss_available, is_remote_url from .file_utils import (
cached_path,
is_datasets_available,
is_faiss_available,
is_remote_url,
requires_datasets,
requires_faiss,
)
from .tokenization_rag import RagTokenizer from .tokenization_rag import RagTokenizer
from .tokenization_utils_base import BatchEncoding from .tokenization_utils_base import BatchEncoding
from .utils import logging from .utils import logging
if is_datasets_available() and is_faiss_available(): if is_datasets_available():
from datasets import load_dataset from datasets import load_dataset
if is_faiss_available():
import faiss import faiss
...@@ -273,6 +281,8 @@ class RagRetriever: ...@@ -273,6 +281,8 @@ class RagRetriever:
_init_retrieval = True _init_retrieval = True
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer): def __init__(self, config, question_encoder_tokenizer, generator_tokenizer):
requires_datasets(self)
requires_faiss(self)
super().__init__() super().__init__()
self.index = ( self.index = (
LegacyIndex( LegacyIndex(
...@@ -301,6 +311,8 @@ class RagRetriever: ...@@ -301,6 +311,8 @@ class RagRetriever:
@classmethod @classmethod
def from_pretrained(cls, retriever_name_or_path, **kwargs): def from_pretrained(cls, retriever_name_or_path, **kwargs):
requires_datasets(cls)
requires_faiss(cls)
config = RagConfig.from_pretrained(retriever_name_or_path, **kwargs) config = RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config) rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
question_encoder_tokenizer = rag_tokenizer.question_encoder question_encoder_tokenizer = rag_tokenizer.question_encoder
......
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..file_utils import requires_pytorch
class PyTorchBenchmark:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class PyTorchBenchmarkArguments:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DataCollator:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DataCollatorForLanguageModeling:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DataCollatorForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DataCollatorForPermutationLanguageModeling:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DataCollatorForSOP:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DataCollatorWithPadding:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
def default_data_collator(*args, **kwargs):
requires_pytorch(default_data_collator)
class GlueDataset:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class GlueDataTrainingArguments:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LineByLineTextDataset:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LineByLineWithSOPTextDataset:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class SquadDataset:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class SquadDataTrainingArguments:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class TextDataset:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class TextDatasetForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
def top_k_top_p_filtering(*args, **kwargs):
requires_pytorch(top_k_top_p_filtering)
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AlbertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class AlbertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AlbertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_albert(*args, **kwargs):
requires_pytorch(load_tf_weights_in_albert)
MODEL_FOR_CAUSAL_LM_MAPPING = None
MODEL_FOR_MASKED_LM_MAPPING = None
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
MODEL_FOR_PRETRAINING_MAPPING = None
MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
MODEL_MAPPING = None
MODEL_WITH_LM_HEAD_MAPPING = None
class AutoModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForCausalLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForSeq2SeqLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class AutoModelWithLMHead:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
BART_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BartForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BartForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BartForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BartModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class PretrainedBartModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class BertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class BertForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class BertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertLayer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class BertLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class BertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_bert(*args, **kwargs):
requires_pytorch(load_tf_weights_in_bert)
class BertGenerationDecoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class BertGenerationEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_bert_generation(*args, **kwargs):
requires_pytorch(load_tf_weights_in_bert_generation)
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CamembertForCausalLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class CamembertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CamembertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CamembertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CamembertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CamembertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CamembertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class CTRLLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CTRLModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class CTRLPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DebertaForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DebertaModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DebertaPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DistilBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DistilBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class DPRContextEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DPRPretrainedContextEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DPRPretrainedQuestionEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DPRPretrainedReader:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DPRQuestionEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class DPRReader:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ElectraForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class ElectraForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ElectraPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_electra(*args, **kwargs):
requires_pytorch(load_tf_weights_in_electra)
class EncoderDecoderModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FlaubertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FlaubertWithLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FSMTForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FSMTModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class PretrainedFSMTModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FunnelBaseModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class FunnelModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_funnel(*args, **kwargs):
requires_pytorch(load_tf_weights_in_funnel)
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class GPT2DoubleHeadsModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class GPT2LMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class GPT2Model:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class GPT2PreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_gpt2(*args, **kwargs):
requires_pytorch(load_tf_weights_in_gpt2)
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LayoutLMForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LayoutLMForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LayoutLMModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class LongformerForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LongformerSelfAttention:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LxmertEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LxmertForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LxmertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LxmertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LxmertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class LxmertVisualFeatureEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class LxmertXLayer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class MarianMTModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MBartForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MMBTForClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class MMBTModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ModalEmbeddings:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForPreTraining:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertLayer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class MobileBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_mobilebert(*args, **kwargs):
requires_pytorch(load_tf_weights_in_mobilebert)
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OpenAIGPTDoubleHeadsModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class OpenAIGPTLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class OpenAIGPTModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class OpenAIGPTPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_openai_gpt(*args, **kwargs):
requires_pytorch(load_tf_weights_in_openai_gpt)
class PegasusForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RagModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RagSequenceForGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class RagTokenForGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class ReformerAttention:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class ReformerForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ReformerForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ReformerForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ReformerLayer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class ReformerModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class ReformerModelWithLMHead:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RetriBertModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RetriBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RobertaForCausalLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class RobertaForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RobertaForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RobertaForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RobertaForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RobertaForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class RobertaModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class T5ForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class T5Model:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class T5PreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_t5(*args, **kwargs):
requires_pytorch(load_tf_weights_in_t5)
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class AdaptiveEmbedding:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class TransfoXLLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class TransfoXLModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class TransfoXLPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_transfo_xl(*args, **kwargs):
requires_pytorch(load_tf_weights_in_transfo_xl)
class Conv1D:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class PreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def apply_chunking_to_forward(*args, **kwargs):
requires_pytorch(apply_chunking_to_forward)
def prune_layer(*args, **kwargs):
requires_pytorch(prune_layer)
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMWithLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLMRobertaForCausalLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaForMaskedLM:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLMRobertaModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class XLNetForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetForTokenClassification:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetLMHeadModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class XLNetPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
def load_tf_weights_in_xlnet(*args, **kwargs):
requires_pytorch(load_tf_weights_in_xlnet)
class Adafactor:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class AdamW:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
def get_constant_schedule(*args, **kwargs):
requires_pytorch(get_constant_schedule)
def get_constant_schedule_with_warmup(*args, **kwargs):
requires_pytorch(get_constant_schedule_with_warmup)
def get_cosine_schedule_with_warmup(*args, **kwargs):
requires_pytorch(get_cosine_schedule_with_warmup)
def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
requires_pytorch(get_cosine_with_hard_restarts_schedule_with_warmup)
def get_linear_schedule_with_warmup(*args, **kwargs):
requires_pytorch(get_linear_schedule_with_warmup)
def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
requires_pytorch(get_polynomial_decay_schedule_with_warmup)
class MarianTokenizer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
class EvalPrediction:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
class Trainer:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
def set_seed(*args, **kwargs):
requires_pytorch(set_seed)
def torch_distributed_zero_first(*args, **kwargs):
requires_pytorch(torch_distributed_zero_first)
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..file_utils import requires_tf
class TensorFlowBenchmarkArguments:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TensorFlowBenchmark:
def __init__(self, *args, **kwargs):
requires_tf(self)
def tf_top_k_top_p_filtering(*args, **kwargs):
requires_tf(tf_top_k_top_p_filtering)
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFAlbertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFAlbertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFAlbertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAlbertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_MODEL_FOR_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_MASKED_LM_MAPPING = None
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
TF_MODEL_FOR_PRETRAINING_MAPPING = None
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
TF_MODEL_MAPPING = None
TF_MODEL_WITH_LM_HEAD_MAPPING = None
class TFAutoModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForCausalLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForSeq2SeqLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFAutoModelWithLMHead:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFBertEmbeddings:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFBertForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFBertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCamembertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCamembertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCamembertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCamembertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCamembertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCamembertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFCTRLLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCTRLModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFCTRLPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDistilBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFDistilBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFElectraForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFElectraForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFElectraPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFFlaubertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFlaubertForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFlaubertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFlaubertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFlaubertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFlaubertWithLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFFunnelBaseModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFFunnelModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFGPT2DoubleHeadsModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFGPT2LMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFGPT2MainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFGPT2Model:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFGPT2PreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLongformerForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFLongformerForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFLongformerModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFLongformerSelfAttention:
def __init__(self, *args, **kwargs):
requires_tf(self)
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFLxmertForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFLxmertMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFLxmertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFLxmertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFLxmertVisualFeatureEncoder:
def __init__(self, *args, **kwargs):
requires_tf(self)
TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFMobileBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForPreTraining:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFMobileBertPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFOpenAIGPTDoubleHeadsModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFOpenAIGPTLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFOpenAIGPTMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFOpenAIGPTModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFOpenAIGPTPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFRobertaForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFRobertaModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFRobertaPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFT5ForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFT5Model:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFT5PreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFAdaptiveEmbedding:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFTransfoXLLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFTransfoXLMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFTransfoXLModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFTransfoXLPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFSequenceSummary:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFSharedEmbeddings:
def __init__(self, *args, **kwargs):
requires_tf(self)
def shape_list(*args, **kwargs):
requires_tf(shape_list)
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLMForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFXLMModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMWithLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLMRobertaForMaskedLM:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMRobertaForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMRobertaForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMRobertaForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMRobertaForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLMRobertaModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFXLNetForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetForQuestionAnsweringSimple:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetForTokenClassification:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetLMHeadModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetMainLayer:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFXLNetModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class TFXLNetPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
class AdamWeightDecay:
def __init__(self, *args, **kwargs):
requires_tf(self)
class GradientAccumulator:
def __init__(self, *args, **kwargs):
requires_tf(self)
class WarmUp:
def __init__(self, *args, **kwargs):
requires_tf(self)
def create_optimizer(*args, **kwargs):
requires_tf(create_optimizer)
class TFTrainer:
def __init__(self, *args, **kwargs):
requires_tf(self)
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
PATH_TO_TRANSFORMERS = "src/transformers"
_re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
DUMMY_CONSTANT = """
{0} = None
"""
DUMMY_PT_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
"""
DUMMY_PT_FUNCTION = """
def {0}(*args, **kwargs):
requires_pytorch({0})
"""
DUMMY_TF_PRETRAINED_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_CLASS = """
class {0}:
def __init__(self, *args, **kwargs):
requires_tf(self)
"""
DUMMY_TF_FUNCTION = """
def {0}(*args, **kwargs):
requires_tf({0})
"""
def read_init():
""" Read the init and exctracts PyTorch and TensorFlow objects. """
with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r", encoding="utf-8") as f:
lines = f.readlines()
line_index = 0
# Find where the PyTorch imports begin
pt_objects = []
while not lines[line_index].startswith("if is_torch_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
pt_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
pt_objects.append(line[8:-2])
line_index += 1
# Find where the TF imports begin
tf_objects = []
while not lines[line_index].startswith("if is_tf_available():"):
line_index += 1
line_index += 1
# Until we unindent, add PyTorch objects to the list
while len(lines[line_index]) <= 1 or lines[line_index].startswith(" "):
line = lines[line_index]
search = _re_single_line_import.search(line)
if search is not None:
tf_objects += search.groups()[0].split(", ")
elif line.startswith(" "):
tf_objects.append(line[8:-2])
line_index += 1
return pt_objects, tf_objects
def create_dummy_object(name, is_pytorch=True):
""" Create the code for the dummy object corresponding to `name`."""
_pretrained = [
"Config" "ForCausalLM",
"ForConditionalGeneration",
"ForMaskedLM",
"ForMultipleChoice",
"ForQuestionAnswering",
"ForSequenceClassification",
"ForTokenClassification",
"Model",
"Tokenizer",
]
if name.isupper():
return DUMMY_CONSTANT.format(name)
elif name.islower():
return (DUMMY_PT_FUNCTION if is_pytorch else DUMMY_TF_FUNCTION).format(name)
else:
is_pretrained = False
for part in _pretrained:
if part in name:
is_pretrained = True
break
if is_pretrained:
template = DUMMY_PT_PRETRAINED_CLASS if is_pytorch else DUMMY_TF_PRETRAINED_CLASS
else:
template = DUMMY_PT_CLASS if is_pytorch else DUMMY_TF_CLASS
return template.format(name)
def create_dummy_files():
""" Create the content of the dummy files. """
pt_objects, tf_objects = read_init()
pt_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
pt_dummies += "from ..file_utils import requires_pytorch\n\n"
pt_dummies += "\n".join([create_dummy_object(o) for o in pt_objects])
tf_dummies = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n"
tf_dummies += "from ..file_utils import requires_tf\n\n"
tf_dummies += "\n".join([create_dummy_object(o, False) for o in tf_objects])
return pt_dummies, tf_dummies
def check_dummies(overwrite=False):
""" Check if the dummy files are up to date and maybe `overwrite` with the right content. """
pt_dummies, tf_dummies = create_dummy_files()
path = os.path.join(PATH_TO_TRANSFORMERS, "utils")
pt_file = os.path.join(path, "dummy_pt_objects.py")
tf_file = os.path.join(path, "dummy_tf_objects.py")
with open(pt_file, "r", encoding="utf-8") as f:
actual_pt_dummies = f.read()
with open(tf_file, "r", encoding="utf-8") as f:
actual_tf_dummies = f.read()
if pt_dummies != actual_pt_dummies:
if overwrite:
print("Updating transformers.utils.dummy_pt_objects.py as the main __init__ has new objects.")
with open(pt_file, "w", encoding="utf-8") as f:
f.write(pt_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
)
if tf_dummies != actual_tf_dummies:
if overwrite:
print("Updating transformers.utils.dummy_tf_objects.py as the main __init__ has new objects.")
with open(tf_file, "w", encoding="utf-8") as f:
f.write(tf_dummies)
else:
raise ValueError(
"The main __init__ has objects that are not present in transformers.utils.dummy_pt_objects.py.",
"Run `make fix-copies` to fix this.",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
args = parser.parse_args()
check_dummies(args.fix_and_overwrite)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment