Unverified Commit 27b3031d authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Mass conversion of documentation from rst to Markdown (#14866)

* Convert docstrings of all configurations and tokenizers

* Processors and fixes

* Last modeling files and fixes to models

* Pipeline modules

* Utils files

* Data submodule

* All the other files

* Style

* Missing examples

* Style again

* Fix copies

* Say bye bye to rst docstrings forever
parent 18587639
......@@ -126,53 +126,53 @@ class ModelCard:
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate a :class:`~transformers.ModelCard` from a pre-trained model model card.
Instantiate a [`ModelCard`] from a pre-trained model model card.
Parameters:
pretrained_model_name_or_path: either:
- a string, the `model id` of a pretrained model card hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a
user or organization name, like ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a model card file saved using the
:func:`~transformers.ModelCard.save_pretrained` method, e.g.: ``./my_model_directory/``.
- a path or url to a saved model card JSON `file`, e.g.: ``./my_model_directory/modelcard.json``.
- a string, the *model id* of a pretrained model card hosted inside a model repo on huggingface.co.
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a model card file saved using the
[`~ModelCard.save_pretrained`] method, e.g.: `./my_model_directory/`.
- a path or url to a saved model card JSON *file*, e.g.: `./my_model_directory/modelcard.json`.
cache_dir: (`optional`) string:
cache_dir: (*optional*) string:
Path to a directory in which a downloaded pre-trained model card should be cached if the standard cache
should not be used.
kwargs: (`optional`) dict: key/value pairs with which to update the ModelCard object after loading.
kwargs: (*optional*) dict: key/value pairs with which to update the ModelCard object after loading.
- The values in kwargs of any keys which are model card attributes will be used to override the loaded
values.
- Behavior concerning key/value pairs whose keys are *not* model card attributes is controlled by the
`return_unused_kwargs` keyword parameter.
*return_unused_kwargs* keyword parameter.
proxies: (`optional`) dict, default None:
proxies: (*optional*) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.
find_from_standard_name: (`optional`) boolean, default True:
find_from_standard_name: (*optional*) boolean, default True:
If the pretrained_model_name_or_path ends with our standard model or config filenames, replace them
with our standard modelcard filename. Can be used to directly feed a model/config url and access the
colocated modelcard.
return_unused_kwargs: (`optional`) bool:
return_unused_kwargs: (*optional*) bool:
- If False, then this function returns just the final model card object.
- If True, then this functions returns a tuple `(model card, unused_kwargs)` where `unused_kwargs` is a
- If True, then this functions returns a tuple *(model card, unused_kwargs)* where *unused_kwargs* is a
dictionary consisting of the key/value pairs whose keys are not model card attributes: ie the part of
kwargs which has not been used to update `ModelCard` and is otherwise ignored.
kwargs which has not been used to update *ModelCard* and is otherwise ignored.
Examples::
Examples:
```python
modelcard = ModelCard.from_pretrained('bert-base-uncased') # Download model card from huggingface.co and cache.
modelcard = ModelCard.from_pretrained('./test/saved_model/') # E.g. model card was saved using `save_pretrained('./test/saved_model/')`
modelcard = ModelCard.from_pretrained('./test/saved_model/') # E.g. model card was saved using *save_pretrained('./test/saved_model/')*
modelcard = ModelCard.from_pretrained('./test/saved_model/modelcard.json')
modelcard = ModelCard.from_pretrained('bert-base-uncased', output_attentions=True, foo=False)
"""
```"""
# This imports every model so let's do it dynamically here.
from transformers.models.auto.configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
......
......@@ -69,7 +69,7 @@ def rename_key_and_reshape_tensor(
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool:
"""Checks if ``key`` of ``(prefix,) + key`` is in random_flax_state_dict"""
"""Checks if `key` of `(prefix,) + key` is in random_flax_state_dict"""
return len(set(random_flax_state_dict) & set([key, (model_prefix,) + key])) > 0
# layer norm
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -35,62 +35,61 @@ ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
class AlbertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.AlbertModel` or a
:class:`~transformers.TFAlbertModel`. It is used to instantiate an ALBERT model according to the specified
This is the configuration class to store the configuration of a [`AlbertModel`] or a
[`TFAlbertModel`]. It is used to instantiate an ALBERT model according to the specified
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
configuration to that of the ALBERT `xxlarge <https://huggingface.co/albert-xxlarge-v2>`__ architecture.
configuration to that of the ALBERT [xxlarge](https://huggingface.co/albert-xxlarge-v2) architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 30000):
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the ALBERT model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.AlbertModel` or
:class:`~transformers.TFAlbertModel`.
embedding_size (:obj:`int`, `optional`, defaults to 128):
`inputs_ids` passed when calling [`AlbertModel`] or
[`TFAlbertModel`].
embedding_size (`int`, *optional*, defaults to 128):
Dimensionality of vocabulary embeddings.
hidden_size (:obj:`int`, `optional`, defaults to 4096):
hidden_size (`int`, *optional*, defaults to 4096):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_hidden_groups (:obj:`int`, `optional`, defaults to 1):
num_hidden_groups (`int`, *optional*, defaults to 1):
Number of groups for the hidden layers, parameters in the same group are shared.
num_attention_heads (:obj:`int`, `optional`, defaults to 64):
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 16384):
intermediate_size (`int`, *optional*, defaults to 16384):
The dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
inner_group_num (:obj:`int`, `optional`, defaults to 1):
inner_group_num (`int`, *optional*, defaults to 1):
The number of inner repetition of attention and ffn.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu_new"`):
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0):
`"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0):
attention_probs_dropout_prob (`float`, *optional*, defaults to 0):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
(e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.AlbertModel` or
:class:`~transformers.TFAlbertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`AlbertModel`] or
[`TFAlbertModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
classifier_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
<https://arxiv.org/abs/2009.13658>`__.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`,
`"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on
`"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to
*Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
Examples::
Examples:
```python
>>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()
......@@ -107,7 +106,7 @@ class AlbertConfig(PretrainedConfig):
>>> # Accessing the model configuration
>>> configuration = model.config
"""
```"""
model_type = "albert"
......
......@@ -742,8 +742,9 @@ class FlaxAlbertForPreTraining(FlaxAlbertPreTrainedModel):
FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example::
Example:
```python
>>> from transformers import AlbertTokenizer, FlaxAlbertForPreTraining
>>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
......@@ -754,6 +755,7 @@ FLAX_ALBERT_FOR_PRETRAINING_DOCSTRING = """
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.sop_logits
```
"""
overwrite_call_docstring(
......
......@@ -885,8 +885,9 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
r"""
Return:
Example::
Example:
```python
>>> import tensorflow as tf
>>> from transformers import AlbertTokenizer, TFAlbertForPreTraining
......@@ -898,7 +899,7 @@ class TFAlbertForPreTraining(TFAlbertPreTrainedModel, TFAlbertPreTrainingLoss):
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
"""
```"""
inputs = input_processing(
func=self.call,
......
......@@ -120,60 +120,63 @@ def get_class_from_dynamic_module(
"""
Extracts a class from a module file, present in the local folder or repository of a model.
.. warning::
<Tip warning={true}>
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It
should therefore only be called on trusted repos.
</Tip>
Args:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the `model id` of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
- a path to a `directory` containing a configuration file saved using the
:func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g., ``./my_model_directory/``.
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
module_file (:obj:`str`):
module_file (`str`):
The name of the module file containing the class to look for.
class_name (:obj:`str`):
class_name (`str`):
The name of the class to import in the module.
cache_dir (:obj:`str` or :obj:`os.PathLike`, `optional`):
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
proxies (:obj:`Dict[str, str]`, `optional`):
A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (:obj:`str` or `bool`, `optional`):
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
use_auth_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token
generated when running `transformers-cli login` (stored in `~/.huggingface`).
revision(`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, will only try to load the tokenizer configuration from local files.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
.. note::
<Tip>
Passing :obj:`use_auth_token=True` is required when you want to use a private model.
Passing `use_auth_token=True` is required when you want to use a private model.
</Tip>
Returns:
:obj:`type`: The class, dynamically imported from the module.
`type`: The class, dynamically imported from the module.
Examples::
Examples:
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
```python
# Download module *modeling.py* from huggingface.co and cache then extract the class *MyBertModel* from this
# module.
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
"""
```"""
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment