Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
26ea725b
Unverified
Commit
26ea725b
authored
Dec 15, 2023
by
Quentin Lhoest
Committed by
GitHub
Dec 15, 2023
Browse files
Update fixtures-image-utils (#28080)
* fix hf-internal-testing/fixtures_image_utils * fix test * comments
parent
1c286be5
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
46 additions
and
29 deletions
+46
-29
tests/models/imagegpt/test_image_processing_imagegpt.py
tests/models/imagegpt/test_image_processing_imagegpt.py
+5
-3
tests/pipelines/test_pipelines_depth_estimation.py
tests/pipelines/test_pipelines_depth_estimation.py
+6
-4
tests/pipelines/test_pipelines_image_classification.py
tests/pipelines/test_pipelines_image_classification.py
+6
-4
tests/pipelines/test_pipelines_image_segmentation.py
tests/pipelines/test_pipelines_image_segmentation.py
+6
-4
tests/pipelines/test_pipelines_object_detection.py
tests/pipelines/test_pipelines_object_detection.py
+6
-4
tests/utils/test_image_utils.py
tests/utils/test_image_utils.py
+17
-10
No files found.
tests/models/imagegpt/test_image_processing_imagegpt.py
View file @
26ea725b
...
...
@@ -226,10 +226,12 @@ class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
def
prepare_images
():
dataset
=
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
image1
=
Image
.
open
(
dataset
[
4
][
"
fil
e"
]
)
image2
=
Image
.
open
(
dataset
[
5
][
"
fil
e"
]
)
image1
=
dataset
[
4
][
"
imag
e"
]
image2
=
dataset
[
5
][
"
imag
e"
]
images
=
[
image1
,
image2
]
...
...
tests/pipelines/test_pipelines_depth_estimation.py
View file @
26ea725b
...
...
@@ -68,17 +68,19 @@ class DepthEstimationPipelineTests(unittest.TestCase):
self
.
assertEqual
({
"predicted_depth"
:
ANY
(
torch
.
Tensor
),
"depth"
:
ANY
(
Image
.
Image
)},
outputs
)
import
datasets
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
outputs
=
depth_estimator
(
[
Image
.
open
(
"./tests/fixtures/tests_samples/COCO/000000039769.png"
),
"http://images.cocodataset.org/val2017/000000039769.jpg"
,
# RGBA
dataset
[
0
][
"
fil
e"
],
dataset
[
0
][
"
imag
e"
],
# LA
dataset
[
1
][
"
fil
e"
],
dataset
[
1
][
"
imag
e"
],
# L
dataset
[
2
][
"
fil
e"
],
dataset
[
2
][
"
imag
e"
],
]
)
self
.
assertEqual
(
...
...
tests/pipelines/test_pipelines_image_classification.py
View file @
26ea725b
...
...
@@ -72,7 +72,9 @@ class ImageClassificationPipelineTests(unittest.TestCase):
import
datasets
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
# Accepts URL + PIL.Image + lists
outputs
=
image_classifier
(
...
...
@@ -80,11 +82,11 @@ class ImageClassificationPipelineTests(unittest.TestCase):
Image
.
open
(
"./tests/fixtures/tests_samples/COCO/000000039769.png"
),
"http://images.cocodataset.org/val2017/000000039769.jpg"
,
# RGBA
dataset
[
0
][
"
fil
e"
],
dataset
[
0
][
"
imag
e"
],
# LA
dataset
[
1
][
"
fil
e"
],
dataset
[
1
][
"
imag
e"
],
# L
dataset
[
2
][
"
fil
e"
],
dataset
[
2
][
"
imag
e"
],
]
)
self
.
assertEqual
(
...
...
tests/pipelines/test_pipelines_image_segmentation.py
View file @
26ea725b
...
...
@@ -113,18 +113,20 @@ class ImageSegmentationPipelineTests(unittest.TestCase):
# to make it work
self
.
assertEqual
([{
"score"
:
ANY
(
float
,
type
(
None
)),
"label"
:
ANY
(
str
),
"mask"
:
ANY
(
Image
.
Image
)}]
*
n
,
outputs
)
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
# RGBA
outputs
=
image_segmenter
(
dataset
[
0
][
"
fil
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
outputs
=
image_segmenter
(
dataset
[
0
][
"
imag
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
m
=
len
(
outputs
)
self
.
assertEqual
([{
"score"
:
ANY
(
float
,
type
(
None
)),
"label"
:
ANY
(
str
),
"mask"
:
ANY
(
Image
.
Image
)}]
*
m
,
outputs
)
# LA
outputs
=
image_segmenter
(
dataset
[
1
][
"
fil
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
outputs
=
image_segmenter
(
dataset
[
1
][
"
imag
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
m
=
len
(
outputs
)
self
.
assertEqual
([{
"score"
:
ANY
(
float
,
type
(
None
)),
"label"
:
ANY
(
str
),
"mask"
:
ANY
(
Image
.
Image
)}]
*
m
,
outputs
)
# L
outputs
=
image_segmenter
(
dataset
[
2
][
"
fil
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
outputs
=
image_segmenter
(
dataset
[
2
][
"
imag
e"
],
threshold
=
0.0
,
mask_threshold
=
0
,
overlap_mask_area_threshold
=
0
)
m
=
len
(
outputs
)
self
.
assertEqual
([{
"score"
:
ANY
(
float
,
type
(
None
)),
"label"
:
ANY
(
str
),
"mask"
:
ANY
(
Image
.
Image
)}]
*
m
,
outputs
)
...
...
tests/pipelines/test_pipelines_object_detection.py
View file @
26ea725b
...
...
@@ -73,17 +73,19 @@ class ObjectDetectionPipelineTests(unittest.TestCase):
import
datasets
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
batch
=
[
Image
.
open
(
"./tests/fixtures/tests_samples/COCO/000000039769.png"
),
"http://images.cocodataset.org/val2017/000000039769.jpg"
,
# RGBA
dataset
[
0
][
"
fil
e"
],
dataset
[
0
][
"
imag
e"
],
# LA
dataset
[
1
][
"
fil
e"
],
dataset
[
1
][
"
imag
e"
],
# L
dataset
[
2
][
"
fil
e"
],
dataset
[
2
][
"
imag
e"
],
]
batch_outputs
=
object_detector
(
batch
,
threshold
=
0.0
)
...
...
tests/utils/test_image_utils.py
View file @
26ea725b
...
...
@@ -538,9 +538,11 @@ class LoadImageTester(unittest.TestCase):
self
.
assertEqual
(
img_arr
.
shape
,
(
64
,
32
,
3
))
def
test_load_img_rgba
(
self
):
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
img
=
load_image
(
dataset
[
0
][
"
fil
e"
])
# img with mode RGBA
img
=
load_image
(
dataset
[
0
][
"
imag
e"
])
# img with mode RGBA
img_arr
=
np
.
array
(
img
)
self
.
assertEqual
(
...
...
@@ -549,9 +551,11 @@ class LoadImageTester(unittest.TestCase):
)
def
test_load_img_la
(
self
):
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
img
=
load_image
(
dataset
[
1
][
"
fil
e"
])
# img with mode LA
img
=
load_image
(
dataset
[
1
][
"
imag
e"
])
# img with mode LA
img_arr
=
np
.
array
(
img
)
self
.
assertEqual
(
...
...
@@ -560,9 +564,11 @@ class LoadImageTester(unittest.TestCase):
)
def
test_load_img_l
(
self
):
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
img
=
load_image
(
dataset
[
2
][
"
fil
e"
])
# img with mode L
img
=
load_image
(
dataset
[
2
][
"
imag
e"
])
# img with mode L
img_arr
=
np
.
array
(
img
)
self
.
assertEqual
(
...
...
@@ -571,10 +577,11 @@ class LoadImageTester(unittest.TestCase):
)
def
test_load_img_exif_transpose
(
self
):
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
"image"
,
split
=
"test"
)
img_file
=
dataset
[
3
][
"file"
]
# we use revision="refs/pr/1" until the PR is merged
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
dataset
=
datasets
.
load_dataset
(
"hf-internal-testing/fixtures_image_utils"
,
split
=
"test"
,
revision
=
"refs/pr/1"
)
img_without_exif_transpose
=
PIL
.
Image
.
open
(
img_file
)
img_without_exif_transpose
=
dataset
[
3
][
"image"
]
img_arr_without_exif_transpose
=
np
.
array
(
img_without_exif_transpose
)
self
.
assertEqual
(
...
...
@@ -582,7 +589,7 @@ class LoadImageTester(unittest.TestCase):
(
333
,
500
,
3
),
)
img_with_exif_transpose
=
load_image
(
img_file
)
img_with_exif_transpose
=
load_image
(
dataset
[
3
][
"image"
]
)
img_arr_with_exif_transpose
=
np
.
array
(
img_with_exif_transpose
)
self
.
assertEqual
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment