Unverified Commit 2642d8d0 authored by Joao Gante's avatar Joao Gante Committed by GitHub
Browse files

Docs: add `kwargs` type to fix formatting (#24733)

parent 5739726f
...@@ -432,7 +432,7 @@ class PretrainedConfig(PushToHubMixin): ...@@ -432,7 +432,7 @@ class PretrainedConfig(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace). namespace).
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
if os.path.isfile(save_directory): if os.path.isfile(save_directory):
......
...@@ -379,7 +379,7 @@ class FeatureExtractionMixin(PushToHubMixin): ...@@ -379,7 +379,7 @@ class FeatureExtractionMixin(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace). namespace).
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
if os.path.isfile(save_directory): if os.path.isfile(save_directory):
......
...@@ -353,7 +353,7 @@ class GenerationConfig(PushToHubMixin): ...@@ -353,7 +353,7 @@ class GenerationConfig(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace). namespace).
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME config_file_name = config_file_name if config_file_name is not None else GENERATION_CONFIG_NAME
......
...@@ -38,7 +38,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" ...@@ -38,7 +38,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search search or log softmax for each vocabulary token when using beam search
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs. Additional logits processor specific kwargs.
Return: Return:
......
...@@ -296,7 +296,7 @@ class FlaxGenerationMixin: ...@@ -296,7 +296,7 @@ class FlaxGenerationMixin:
Custom logits processors that complement the default logits processors built from arguments and Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users. generation config an error is thrown. This feature is intended for advanced users.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
......
...@@ -39,7 +39,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" ...@@ -39,7 +39,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search search or log softmax for each vocabulary token when using beam search
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs. Additional logits processor specific kwargs.
Return: Return:
......
...@@ -24,7 +24,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r""" ...@@ -24,7 +24,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax. or scores for each vocabulary token after SoftMax.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs. Additional stopping criteria specific kwargs.
Return: Return:
......
...@@ -42,7 +42,7 @@ TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" ...@@ -42,7 +42,7 @@ TF_LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
cur_len (`int`): cur_len (`int`):
The current length of valid input sequence tokens. In the TF implementation, the input_ids' sequence length The current length of valid input sequence tokens. In the TF implementation, the input_ids' sequence length
is the maximum length generate can produce, and we need to know which of its tokens are valid. is the maximum length generate can produce, and we need to know which of its tokens are valid.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs. Additional logits processor specific kwargs.
Return: Return:
......
...@@ -705,7 +705,7 @@ class TFGenerationMixin: ...@@ -705,7 +705,7 @@ class TFGenerationMixin:
seed (`List[int]`, *optional*): seed (`List[int]`, *optional*):
Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the
`seed` argument from stateless functions in `tf.random`. `seed` argument from stateless functions in `tf.random`.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
......
...@@ -1225,7 +1225,7 @@ class GenerationMixin: ...@@ -1225,7 +1225,7 @@ class GenerationMixin:
streamer (`BaseStreamer`, *optional*): streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
......
...@@ -122,8 +122,8 @@ class HfArgumentParser(ArgumentParser): ...@@ -122,8 +122,8 @@ class HfArgumentParser(ArgumentParser):
Args: Args:
dataclass_types: dataclass_types:
Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args. Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
(Optional) Passed to `argparse.ArgumentParser()` in the regular way. Passed to `argparse.ArgumentParser()` in the regular way.
""" """
# To make the default appear when using --help # To make the default appear when using --help
if "formatter_class" not in kwargs: if "formatter_class" not in kwargs:
......
...@@ -208,7 +208,7 @@ class ImageProcessingMixin(PushToHubMixin): ...@@ -208,7 +208,7 @@ class ImageProcessingMixin(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace). namespace).
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
if os.path.isfile(save_directory): if os.path.isfile(save_directory):
......
...@@ -1043,7 +1043,7 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin): ...@@ -1043,7 +1043,7 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
</Tip> </Tip>
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
if os.path.isfile(save_directory): if os.path.isfile(save_directory):
......
...@@ -2371,8 +2371,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu ...@@ -2371,8 +2371,7 @@ class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin, TFGenerationMixin, Pu
Whether or not to create a PR with the uploaded files or directly commit. Whether or not to create a PR with the uploaded files or directly commit.
safe_serialization (`bool`, *optional*, defaults to `False`): safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
kwargs (`Dict[str, Any]`, *optional*):
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
if os.path.isfile(save_directory): if os.path.isfile(save_directory):
...@@ -3166,7 +3165,7 @@ class TFConv1D(tf.keras.layers.Layer): ...@@ -3166,7 +3165,7 @@ class TFConv1D(tf.keras.layers.Layer):
The number of input features. The number of input features.
initializer_range (`float`, *optional*, defaults to 0.02): initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation to use to initialize the weights. The standard deviation to use to initialize the weights.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
""" """
...@@ -3208,7 +3207,7 @@ class TFSharedEmbeddings(tf.keras.layers.Layer): ...@@ -3208,7 +3207,7 @@ class TFSharedEmbeddings(tf.keras.layers.Layer):
initializer_range (`float`, *optional*): initializer_range (`float`, *optional*):
The standard deviation to use when initializing the weights. If no value is provided, it will default to The standard deviation to use when initializing the weights. If no value is provided, it will default to
\\(1/\sqrt{hidden\_size}\\). \\(1/\sqrt{hidden\_size}\\).
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
""" """
# TODO (joao): flagged for delection due to embeddings refactor # TODO (joao): flagged for delection due to embeddings refactor
...@@ -3322,7 +3321,7 @@ class TFSequenceSummary(tf.keras.layers.Layer): ...@@ -3322,7 +3321,7 @@ class TFSequenceSummary(tf.keras.layers.Layer):
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights. initializer_range (`float`, defaults to 0.02): The standard deviation to use to initialize the weights.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`. Additional keyword arguments passed along to the `__init__` of `tf.keras.layers.Layer`.
""" """
......
...@@ -1700,8 +1700,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix ...@@ -1700,8 +1700,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMix
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
variant (`str`, *optional*): variant (`str`, *optional*):
If specified, weights are saved in the format pytorch_model.<variant>.bin. If specified, weights are saved in the format pytorch_model.<variant>.bin.
kwargs (`Dict[str, Any]`, *optional*):
kwargs:
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
""" """
# Checks if the model has been loaded in 8-bit # Checks if the model has been loaded in 8-bit
......
...@@ -202,9 +202,6 @@ class JukeboxTokenizer(PreTrainedTokenizer): ...@@ -202,9 +202,6 @@ class JukeboxTokenizer(PreTrainedTokenizer):
""" """
Performs any necessary transformations before tokenization. Performs any necessary transformations before tokenization.
This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
`kwargs` at the end of the encoding process to be sure all the arguments have been used.
Args: Args:
artist (`str`): artist (`str`):
The artist name to prepare. This will mostly lower the string The artist name to prepare. This will mostly lower the string
...@@ -216,8 +213,6 @@ class JukeboxTokenizer(PreTrainedTokenizer): ...@@ -216,8 +213,6 @@ class JukeboxTokenizer(PreTrainedTokenizer):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification. which it will tokenize. This is useful for NER or token classification.
kwargs:
Keyword arguments to use for the tokenization.
""" """
for idx in range(len(self.version)): for idx in range(len(self.version)):
if self.version[idx] == "v3": if self.version[idx] == "v3":
......
...@@ -1228,7 +1228,7 @@ class MusicgenForCausalLM(MusicgenPreTrainedModel): ...@@ -1228,7 +1228,7 @@ class MusicgenForCausalLM(MusicgenPreTrainedModel):
generation config an error is thrown. This feature is intended for advanced users. generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`): synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
...@@ -2225,7 +2225,7 @@ class MusicgenForConditionalGeneration(PreTrainedModel): ...@@ -2225,7 +2225,7 @@ class MusicgenForConditionalGeneration(PreTrainedModel):
generation config an error is thrown. This feature is intended for advanced users. generation config an error is thrown. This feature is intended for advanced users.
synced_gpus (`bool`, *optional*, defaults to `False`): synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
......
...@@ -962,7 +962,7 @@ class RagSequenceForGeneration(RagPreTrainedModel): ...@@ -962,7 +962,7 @@ class RagSequenceForGeneration(RagPreTrainedModel):
Number of beams for beam search. 1 means no beam search. Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`) n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer. Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]. Additional kwargs will be passed to [`~generation.GenerationMixin.generate`].
Return: Return:
...@@ -1444,7 +1444,7 @@ class RagTokenForGeneration(RagPreTrainedModel): ...@@ -1444,7 +1444,7 @@ class RagTokenForGeneration(RagPreTrainedModel):
Custom stopping criteria that complement the default stopping criteria built from arguments and a Custom stopping criteria that complement the default stopping criteria built from arguments and a
model's config. If a stopping criteria is passed that is already created with the arguments or a model's config. If a stopping criteria is passed that is already created with the arguments or a
model's config an error is thrown. model's config an error is thrown.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. forwarded to the `forward` function of the model.
......
...@@ -1051,7 +1051,7 @@ class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss ...@@ -1051,7 +1051,7 @@ class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss
Custom logits processors that complement the default logits processors built from arguments and a Custom logits processors that complement the default logits processors built from arguments and a
model's config. If a logit processor is passed that is already created with the arguments or a model's model's config. If a logit processor is passed that is already created with the arguments or a model's
config an error is thrown. config an error is thrown.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. forwarded to the `forward` function of the model.
...@@ -1629,7 +1629,7 @@ class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingL ...@@ -1629,7 +1629,7 @@ class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingL
Number of beams for beam search. 1 means no beam search. Number of beams for beam search. 1 means no beam search.
n_docs (`int`, *optional*, defaults to `config.n_docs`) n_docs (`int`, *optional*, defaults to `config.n_docs`)
Number of documents to retrieve and/or number of documents for which to generate an answer. Number of documents to retrieve and/or number of documents for which to generate an answer.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]
Return: Return:
......
...@@ -1394,7 +1394,7 @@ class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLangua ...@@ -1394,7 +1394,7 @@ class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLangua
Whether to return token-level timestamps with the text. This can be used with or without the Whether to return token-level timestamps with the text. This can be used with or without the
`return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into
words. words.
kwargs: kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment