Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
24d59c79
Unverified
Commit
24d59c79
authored
Feb 26, 2024
by
fxmarty
Committed by
GitHub
Feb 26, 2024
Browse files
Use `torch.bool` instead of `torch.int64` for non-persistant causal mask buffer (#29241)
use torch.bool instead of torch.int64
parent
7c4995f9
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
5 deletions
+13
-5
src/transformers/models/gemma/modeling_gemma.py
src/transformers/models/gemma/modeling_gemma.py
+5
-2
src/transformers/models/llama/modeling_llama.py
src/transformers/models/llama/modeling_llama.py
+8
-3
No files found.
src/transformers/models/gemma/modeling_gemma.py
View file @
24d59c79
...
@@ -810,8 +810,11 @@ class GemmaModel(GemmaPreTrainedModel):
...
@@ -810,8 +810,11 @@ class GemmaModel(GemmaPreTrainedModel):
self
.
norm
=
GemmaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
norm
=
GemmaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
gradient_checkpointing
=
False
self
.
gradient_checkpointing
=
False
# register a causal mask to separate causal and padding mask creation. Merging happends in the attention class
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
causal_mask
=
torch
.
full
((
config
.
max_position_embeddings
,
config
.
max_position_embeddings
),
fill_value
=
1
)
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
causal_mask
=
torch
.
full
(
(
config
.
max_position_embeddings
,
config
.
max_position_embeddings
),
fill_value
=
True
,
dtype
=
torch
.
bool
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
# Initialize weights and apply final processing
# Initialize weights and apply final processing
self
.
post_init
()
self
.
post_init
()
...
...
src/transformers/models/llama/modeling_llama.py
View file @
24d59c79
...
@@ -811,7 +811,9 @@ class LlamaPreTrainedModel(PreTrainedModel):
...
@@ -811,7 +811,9 @@ class LlamaPreTrainedModel(PreTrainedModel):
)
)
if
max_cache_len
>
self
.
model
.
causal_mask
.
shape
[
-
1
]
or
self
.
device
!=
self
.
model
.
causal_mask
.
device
:
if
max_cache_len
>
self
.
model
.
causal_mask
.
shape
[
-
1
]
or
self
.
device
!=
self
.
model
.
causal_mask
.
device
:
causal_mask
=
torch
.
full
((
max_cache_len
,
max_cache_len
),
fill_value
=
1
,
device
=
self
.
device
)
causal_mask
=
torch
.
full
(
(
max_cache_len
,
max_cache_len
),
fill_value
=
True
,
device
=
self
.
device
,
dtype
=
torch
.
bool
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
for
layer
in
self
.
model
.
layers
:
for
layer
in
self
.
model
.
layers
:
...
@@ -919,8 +921,11 @@ class LlamaModel(LlamaPreTrainedModel):
...
@@ -919,8 +921,11 @@ class LlamaModel(LlamaPreTrainedModel):
self
.
norm
=
LlamaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
norm
=
LlamaRMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
gradient_checkpointing
=
False
self
.
gradient_checkpointing
=
False
# register a causal mask to separate causal and padding mask creation. Merging happends in the attention class
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
causal_mask
=
torch
.
full
((
config
.
max_position_embeddings
,
config
.
max_position_embeddings
),
fill_value
=
1
)
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_position_embeddings`.
causal_mask
=
torch
.
full
(
(
config
.
max_position_embeddings
,
config
.
max_position_embeddings
),
fill_value
=
True
,
dtype
=
torch
.
bool
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
self
.
register_buffer
(
"causal_mask"
,
torch
.
triu
(
causal_mask
,
diagonal
=
1
),
persistent
=
False
)
# Initialize weights and apply final processing
# Initialize weights and apply final processing
self
.
post_init
()
self
.
post_init
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment