Unverified Commit 232c898f authored by MS Kim(tony9402)'s avatar MS Kim(tony9402) Committed by GitHub
Browse files

Fix annotations (#24582)

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations

* fix annotations
parent c817bc44
...@@ -584,7 +584,7 @@ class TableTransformerEncoderLayer(nn.Module): ...@@ -584,7 +584,7 @@ class TableTransformerEncoderLayer(nn.Module):
): ):
""" """
Args: Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values. values.
...@@ -668,7 +668,7 @@ class TableTransformerDecoderLayer(nn.Module): ...@@ -668,7 +668,7 @@ class TableTransformerDecoderLayer(nn.Module):
): ):
""" """
Args: Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values. values.
...@@ -679,7 +679,7 @@ class TableTransformerDecoderLayer(nn.Module): ...@@ -679,7 +679,7 @@ class TableTransformerDecoderLayer(nn.Module):
position embeddings that are added to the queries and keys position embeddings that are added to the queries and keys
in the self-attention layer. in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`): encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)` cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values. values.
......
...@@ -358,11 +358,11 @@ class TrOCRDecoderLayer(nn.Module): ...@@ -358,11 +358,11 @@ class TrOCRDecoderLayer(nn.Module):
): ):
""" """
Args: Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`): encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)` cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
......
...@@ -313,7 +313,7 @@ class TFWhisperEncoderLayer(tf.keras.layers.Layer): ...@@ -313,7 +313,7 @@ class TFWhisperEncoderLayer(tf.keras.layers.Layer):
): ):
""" """
Args: Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
...@@ -391,11 +391,11 @@ class TFWhisperDecoderLayer(tf.keras.layers.Layer): ...@@ -391,11 +391,11 @@ class TFWhisperDecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
""" """
Args: Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`): attention mask of size attention_mask (`tf.Tensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`): encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)` cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
......
...@@ -348,11 +348,11 @@ class TFXGLMDecoderLayer(tf.keras.layers.Layer): ...@@ -348,11 +348,11 @@ class TFXGLMDecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
""" """
Args: Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)* hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`): encoder_hidden_states (`tf.Tensor`):
cross attention input to the layer of shape *(seq_len, batch, embed_dim)* cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
......
...@@ -1794,7 +1794,7 @@ class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer): ...@@ -1794,7 +1794,7 @@ class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(tf.keras.layers.Layer):
def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False): def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False):
""" """
Args: Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)* hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
...@@ -1867,10 +1867,10 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer): ...@@ -1867,10 +1867,10 @@ class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(tf.keras.layers.Layer):
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
""" """
Args: Args:
hidden_states (`tf.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)* hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`tf.Tensor`): attention mask of size attention_mask (`tf.Tensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(seq_len, batch, embed_dim)* encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`tf.Tensor`): encoder attention mask of size encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
......
...@@ -1826,7 +1826,7 @@ class {{cookiecutter.camelcase_modelname}}EncoderLayer(nn.Module): ...@@ -1826,7 +1826,7 @@ class {{cookiecutter.camelcase_modelname}}EncoderLayer(nn.Module):
): ):
""" """
Args: Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
...@@ -1907,10 +1907,10 @@ class {{cookiecutter.camelcase_modelname}}DecoderLayer(nn.Module): ...@@ -1907,10 +1907,10 @@ class {{cookiecutter.camelcase_modelname}}DecoderLayer(nn.Module):
): ):
""" """
Args: Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(seq_len, batch, embed_dim)* hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(seq_len, batch, embed_dim)* encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment