Unverified Commit 228cdd6a authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into conditional-generation

parents 3cf2020c 079bfb32
......@@ -9,7 +9,7 @@ jobs:
steps:
- checkout
- run: sudo pip install torch
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install tensorflow
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn
......@@ -38,7 +38,7 @@ jobs:
parallelism: 1
steps:
- checkout
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install tensorflow
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: sudo pip install tensorboardX scikit-learn
......@@ -65,7 +65,7 @@ jobs:
- image: circleci/python:2.7
steps:
- checkout
- run: sudo pip install tensorflow==2.0.0-rc0
- run: sudo pip install tensorflow
- run: sudo pip install --progress-bar off .
- run: sudo pip install pytest codecov pytest-cov
- run: python -m pytest -sv ./transformers/tests/ --cov
......
---
name: "\U0001F5A5 New Benchmark"
about: You benchmark a part of this library and would like to share your results
title: "[Benchmark]"
labels: ''
assignees: ''
---
# Benchmarking Transformers
## Benchmark
Which part of Transformers did you benchmark?
## Set-up
What did you run your benchmarks on? Please include details, such as: CPU, GPU? If using multiple GPUs, which parallelization did you use?
## Results
Put your results here!
......@@ -118,6 +118,9 @@ dmypy.json
# vscode
.vscode
# Pycharm
.idea
# TF code
tensorflow_code
......@@ -131,4 +134,7 @@ examples/runs
# data
/data
serialization_dir
\ No newline at end of file
serialization_dir
# emacs
*.*~
\ No newline at end of file
# How to contribute to transformers?
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
## You can contribute in so many ways!
There are 4 ways you can contribute to transformers:
* Fixing outstanding issues with the existing code;
* Implementing new models;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
*All are equally valuable to the community.*
## Submitting a new issue or feature request
Do your best to follow these guidelines when submitting an issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The transformers are robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Did not find it? :( So we can act quickly on it, please follow these steps:
* Include your **OS type and version**, the versions of **Python**, **PyTorch** and
**Tensorflow** when applicable;
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s;
* Provide the *full* traceback if an exception is raised.
To get the OS and software versions, execute the following code and copy-paste
the output:
```
import platform; print("Platform", platform.platform())
import sys; print("Python", sys.version)
import torch; print("PyTorch", torch.__version__)
import tensorflow; print("Tensorflow", tensorflow.__version__)
```
### Do you want to implement a new model?
Awesome! Please provide the following information:
* Short description of the model and link to the paper;
* Link to the implementation if it is open-source;
* Link to the model weights if they are available.
If you are willing to contribute the model yourself, let us know so we can best
guide you.
### Do you want a new feature (that is not a model)?
A world-class feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
post it.
## Start contributing! (Pull Requests)
Before writing code, we strongly advise you to search through the exising PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
`transformers`. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/transformers) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your github user account.
2. Clone your fork to your local disk, and add the base repository as a remote:
```bash
$ git clone git@github.com:<your Github handle>/transformers.git
$ cd transformers
$ git remote add upstream git@github.com:huggingface/transformers.git
```
3. Create a new branch to hold your development changes:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**do not** work on the `master` branch.
4. Set up a development environment by running the following command in a virtual environment:
```bash
$ pip install -r requirements-dev.txt
```
5. Develop the features on your branch. Add changed files using `git add` and
then `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit
```
Please write [good commit
messages](https://chris.beams.io/posts/git-commit/). It
is a good idea to sync your copy of the code with the original repository
regularly. This way you can quickly account for changes:
```bash
$ git fetch upstream
$ git rebase upstream/master
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on Github. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request adresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`. These
are useful to avoid duplicated work, and to differentiate it from PRs ready
to be merged;
4. Make sure pre-existing tests still pass;
5. Add high-coverage tests. No quality test, no merge;
6. All public methods must have informative doctrings;
### Style guide
For documentation strings, `transformers` follows the [google
style](https://google.github.io/styleguide/pyguide.html).
#### This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md)
......@@ -22,7 +22,7 @@
<p>State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch
</h3>
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides state-of-the-art general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.
### Features
......@@ -39,7 +39,7 @@ State-of-the-art NLP for everyone
Lower compute costs, smaller carbon footprint
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages
- 10 architectures with over 30 pretrained models, some in more than 100 languages
Choose the right framework for every part of a model's lifetime
- Train state-of-the-art models in 3 lines of code
......@@ -56,7 +56,7 @@ Choose the right framework for every part of a model's lifetime
| [Quick tour: Usage](#quick-tour) | Tokenizers & models usage: Bert and GPT-2 |
| [Quick tour: TF 2.0 and PyTorch ](#Quick-tour-TF-20-training-and-PyTorch-interoperability) | Train a TF 2.0 model in 10 lines of code, load it in PyTorch |
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
| [Migrating from pytorch-transformers to transformers](#Migrating-from-pytorch-transformers-to-transformers) | Migrating your code from pytorch-transformers to transformers |
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-transformers) | Migrating your code from pytorch-pretrained-bert to transformers |
| [Documentation](https://huggingface.co/transformers/) | Full API documentation and more |
......@@ -105,13 +105,13 @@ python -m pytest -sv ./examples/
You should check out our [`swift-coreml-transformers`](https://github.com/huggingface/swift-coreml-transformers) repo.
It contains an example of a conversion script from a Pytorch trained Transformer model (here, `GPT-2`) to a CoreML model that runs on iOS devices.
It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models to productizing them in CoreML, or prototype a model or an app in CoreML then research its hyperparameters or architecture from TensorFlow 2.0 and/or PyTorch. Super exciting!
## Model architectures
🤗 Transformers currently provides 8 NLU/NLG architectures:
🤗 Transformers currently provides 10 NLU/NLG architectures:
1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
......@@ -121,6 +121,7 @@ At some point in the future, you'll be able to seamlessly move from pre-training
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
7. **[RoBERTa](https://github.com/pytorch/fairseq/tree/master/examples/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
8. **[DistilBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation).
9. **[CTRL](https://github.com/salesforce/ctrl/)** (from Salesforce) released with the paper [CTRL: A Conditional Transformer Language Model for Controllable Generation](https://arxiv.org/abs/1909.05858) by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/transformers/examples.html).
......@@ -147,6 +148,7 @@ from transformers import *
MODELS = [(BertModel, BertTokenizer, 'bert-base-uncased'),
(OpenAIGPTModel, OpenAIGPTTokenizer, 'openai-gpt'),
(GPT2Model, GPT2Tokenizer, 'gpt2'),
(CTRLModel, CTRLTokenizer, 'ctrl'),
(TransfoXLModel, TransfoXLTokenizer, 'transfo-xl-wt103'),
(XLNetModel, XLNetTokenizer, 'xlnet-base-cased'),
(XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024'),
......@@ -174,10 +176,11 @@ BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNex
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
# and need to be trained on the down-stream task
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
pretrained_weights = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(pretrained_weights)
for model_class in BERT_MODEL_CLASSES:
# Load pretrained model/tokenizer
model = model_class.from_pretrained('bert-base-uncased')
model = model_class.from_pretrained(pretrained_weights)
# Models can return full list of hidden-states & attentions weights at each layer
model = model_class.from_pretrained(pretrained_weights,
......@@ -240,8 +243,9 @@ sentence_2 = "His findings were not compatible with this research."
inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')
inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')
pred_1 = pytorch_model(**inputs_1)[0].argmax().item()
pred_2 = pytorch_model(**inputs_2)[0].argmax().item()
pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()
pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()
print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")
print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")
```
......@@ -252,7 +256,7 @@ The library comprises several example scripts with SOTA performances for NLU and
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
- `run_generation.py`: an example using GPT, GPT-2, Transformer-XL and XLNet for conditional language generation
- `run_generation.py`: an example using GPT, GPT-2, CTRL, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
Here are three quick usage examples for these scripts:
......@@ -390,7 +394,7 @@ python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncase
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
### `run_generation.py`: Text generation with GPT, GPT-2, Transformer-XL and XLNet
### `run_generation.py`: Text generation with GPT, GPT-2, CTRL, Transformer-XL and XLNet
A conditional generation script is also included to generate text from a prompt.
The generation script includes the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by Aman Rusia to get high-quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
......@@ -404,6 +408,16 @@ python ./examples/run_generation.py \
--model_name_or_path=gpt2 \
```
and from the Salesforce CTRL model:
```shell
python ./examples/run_generation.py \
--model_type=ctrl \
--length=20 \
--model_name_or_path=ctrl \
--temperature=0 \
--repetition_penalty=1.2 \
```
## Migrating from pytorch-transformers to transformers
Here is a quick summary of what you should take care of when migrating from `pytorch-transformers` to `transformers`.
......@@ -533,4 +547,13 @@ for batch in train_data:
## Citation
At the moment, there is no paper associated with Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project.
We now have a paper you can cite for the 🤗 Transformers library:
```
@article{Wolf2019HuggingFacesTS,
title={HuggingFace's Transformers: State-of-the-art Natural Language Processing},
author={Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and R'emi Louf and Morgan Funtowicz and Jamie Brew},
journal={ArXiv},
year={2019},
volume={abs/1910.03771}
}
```
......@@ -50,7 +50,7 @@ make html
---
**NOTE**
If you are adding/removing elements from the toc-tree or from any strutural item, it is recommended to clean the build
If you are adding/removing elements from the toc-tree or from any structural item, it is recommended to clean the build
directory before rebuilding. Run the following command to clean and build:
```bash
......
# Benchmarks
This section is dedicated to the Benchmarks done by the library, both by maintainers, contributors and users. These
benchmark will help keep track of the preformance improvements that are brought to our models across versions.
## Benchmarking all models for inference
As of version 2.1 we have benchmarked all models for inference, across many different settings: using PyTorch, with
and without TorchScript, using TensorFlow, with and without XLA. All of those tests were done across CPUs (except for
TensorFlow XLA) and GPUs.
The approach is detailed in the [following blogpost](https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2)
The results are available [here](https://docs.google.com/spreadsheets/d/1sryqufw2D0XlUH4sq3e9Wnxu5EAQkaohzrJbd5HdQ_w/edit?usp=sharing).
## TF2 with mixed precision, XLA, Distribution (@tlkh)
This work was done by [Timothy Liu](https://github.com/tlkh).
There are very positive results to be gained from the various TensorFlow 2.0 features:
- Automatic Mixed Precision (AMP)
- XLA compiler
- Distribution strategies (multi-GPU)
The benefits are listed here (tested on CoLA, MRPC, SST-2):
- AMP: Between 1.4x to 1.6x decrease in overall time without change in batch size
- AMP+XLA: Up to 2.5x decrease in overall time on SST-2 (larger dataset)
- Distribution: Between 1.4x to 3.4x decrease in overall time on 4xV100
- Combined: Up to 5.7x decrease in overall training time, or 9.1x training throughput
The model quality (measured by the validation accuracy) fluctuates slightly. Taking an average of 4 training runs
on a single GPU gives the following results:
- CoLA: AMP results in slighter lower acc (0.820 vs 0.824)
- MRPC: AMP results in lower acc (0.823 vs 0.835)
- SST-2: AMP results in slighter lower acc (0.918 vs 0.922)
However, in a distributed setting with 4xV100 (4x batch size), AMP can yield in better results:
CoLA: AMP results in higher acc (0.828 vs 0.812)
MRPC: AMP results in lower acc (0.817 vs 0.827)
SST-2: AMP results in slightly lower acc (0.926 vs 0.929)
The benchmark script is available [here](https://github.com/NVAITC/benchmarking/blob/master/tf2/bert_dist.py).
Note: on some tasks (e.g. MRPC), the dataset is too small. The overhead due to the model compilation with XLA as well
as the distribution strategy setup does not speed things up. The XLA compile time is also the reason why although throughput
can increase a lot (e.g. 2.7x for single GPU), overall (end-to-end) training speed-up is not as fast (as low as 1.4x)
The benefits as seen on SST-2 (larger dataset) is much clear.
All results can be seen on this [Google Sheet](https://docs.google.com/spreadsheets/d/1538MN224EzjbRL239sqSiUy6YY-rAjHyXhTzz_Zptls/edit#gid=960868445).
......@@ -26,7 +26,7 @@ author = u'huggingface'
# The short X.Y version
version = u''
# The full version, including alpha/beta/rc tags
release = u'2.0.0'
release = u'2.1.1'
# -- General configuration ---------------------------------------------------
......
......@@ -62,6 +62,8 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
migration
bertology
torchscript
multilingual
benchmarks
.. toctree::
:maxdepth: 2
......@@ -86,3 +88,4 @@ The library currently contains PyTorch and Tensorflow implementations, pre-train
model_doc/xlnet
model_doc/roberta
model_doc/distilbert
model_doc/ctrl
Installation
================================================
# Installation
Transformers is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 1.1.0
With pip
^^^^^^^^
## With pip
PyTorch Transformers can be installed using pip as follows:
.. code-block:: bash
``` bash
pip install transformers
```
pip install transformers
From source
^^^^^^^^^^^
## From source
To install from source, clone the repository and install with:
.. code-block:: bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install [--editable] .
``` bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install [--editable] .
```
Tests
^^^^^
## Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the `tests folder <https://github.com/huggingface/transformers/tree/master/transformers/tests>`_ and examples tests in the `examples folder <https://github.com/huggingface/transformers/tree/master/examples>`_.
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/transformers/tree/master/transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/transformers/tree/master/examples).
Tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
Run all the tests from the root of the cloned repository with the commands:
.. code-block:: bash
python -m pytest -sv ./transformers/tests/
python -m pytest -sv ./examples/
``` bash
python -m pytest -sv ./transformers/tests/
python -m pytest -sv ./examples/
```
OpenAI GPT original tokenization workflow
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## OpenAI GPT original tokenization workflow
If you want to reproduce the original tokenization process of the ``OpenAI GPT`` paper, you will need to install ``ftfy`` (use version 4.4.3 if you are using Python 2) and ``SpaCy`` :
If you want to reproduce the original tokenization process of the `OpenAI GPT` paper, you will need to install `ftfy` (use version 4.4.3 if you are using Python 2) and `SpaCy`:
.. code-block:: bash
``` bash
pip install spacy ftfy==4.4.3
python -m spacy download en
```
pip install spacy ftfy==4.4.3
python -m spacy download en
If you don't install `ftfy` and `SpaCy`, the `OpenAI GPT` tokenizer will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
If you don't install ``ftfy`` and ``SpaCy``\ , the ``OpenAI GPT`` tokenizer will default to tokenize using BERT's ``BasicTokenizer`` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry).
Note on model downloads (Continuous Integration or large-scale deployments)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
## Note on model downloads (Continuous Integration or large-scale deployments)
If you expect to be downloading large volumes of models (more than 1,000) from our hosted bucket (for instance through your CI setup, or a large-scale production deployment), please cache the model files on your end. It will be way faster, and cheaper. Feel free to contact us privately if you need any help.
## Do you want to run a Transformer model on a mobile device?
Do you want to run a Transformer model on a mobile device?
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You should check out our `swift-coreml-transformers <https://github.com/huggingface/swift-coreml-transformers>`_ repo.
It contains an example of a conversion script from a Pytorch trained Transformer model (here, ``GPT-2``) to a CoreML model that runs on iOS devices.
You should check out our [swift-coreml-transformers](https://github.com/huggingface/swift-coreml-transformers) repo.
It also contains an implementation of BERT for Question answering.
It contains a set of tools to convert PyTorch or TensorFlow 2.0 trained Transformer models (currently contains `GPT-2`, `DistilGPT-2`, `BERT`, and `DistilBERT`) to CoreML models that run on iOS devices.
At some point in the future, you'll be able to seamlessly move from pre-training or fine-tuning models in PyTorch to productizing them in CoreML,
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!
\ No newline at end of file
or prototype a model or an app in CoreML then research its hyperparameters or architecture from PyTorch. Super exciting!
CTRL
----------------------------------------------------
``CTRLConfig``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLConfig
:members:
``CTRLTokenizer``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLTokenizer
:members:
``CTRLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLModel
:members:
``CTRLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.CTRLLMHeadModel
:members:
``TFCTRLModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFCTRLModel
:members:
``TFCTRLLMHeadModel``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFCTRLLMHeadModel
:members:
Multi-lingual models
================================================
Most of the models available in this library are mono-lingual models (English, Chinese and German). A few
multi-lingual models are available and have a different mechanisms than mono-lingual models.
This page details the usage of these models.
The two models that currently support multiple languages are BERT and XLM.
XLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
XLM has a total of 10 different checkpoints, only one of which is mono-lingual. The 9 remaining model checkpoints can
be split in two categories: the checkpoints that make use of language embeddings, and those that don't
XLM & Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-ende-1024`` (Masked language modeling, English-German)
- ``xlm-mlm-enfr-1024`` (Masked language modeling, English-French)
- ``xlm-mlm-enro-1024`` (Masked language modeling, English-Romanian)
- ``xlm-mlm-xnli15-1024`` (Masked language modeling, XNLI languages)
- ``xlm-mlm-tlm-xnli15-1024`` (Masked language modeling + Translation, XNLI languages)
- ``xlm-clm-enfr-1024`` (Causal language modeling, English-French)
- ``xlm-clm-ende-1024`` (Causal language modeling, English-German)
These checkpoints require language embeddings that will specify the language used at inference time. These language
embeddings are represented as a tensor that is of the same shape as the input ids passed to the model. The values in
these tensors depend on the language used and are identifiable using the ``lang2id`` and ``id2lang`` attributes
from the tokenizer.
Here is an example using the ``xlm-clm-enfr-1024`` checkpoint (Causal language modeling, English-French):
.. code-block::
import torch
from transformers import XLMTokenizer, XLMWithLMHeadModel
tokenizer = XLMTokenizer.from_pretrained("xlm-clm-1024-enfr")
The different languages this model/tokenizer handles, as well as the ids of these languages are visible using the
``lang2id`` attribute:
.. code-block::
print(tokenizer.lang2id) # {'en': 0, 'fr': 1}
These ids should be used when passing a language parameter during a model pass. Let's define our inputs:
.. code-block::
input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1
We should now define the language embedding by using the previously defined language id. We want to create a tensor
filled with the appropriate language ids, of the same size as input_ids. For english, the id is 0:
.. code-block::
language_id = tokenizer.lang2id['en'] # 0
langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0])
# We reshape it to be of size (batch_size, sequence_length)
langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1)
You can then feed it all as input to your model:
.. code-block::
outputs = model(input_ids, langs=langs)
The example `run_generation.py <https://github.com/huggingface/transformers/blob/master/examples/run_generation.py>`__
can generate text using the CLM checkpoints from XLM, using the language embeddings.
XLM without Language Embeddings
------------------------------------------------
This section concerns the following checkpoints:
- ``xlm-mlm-17-1280`` (Masked language modeling, 17 languages)
- ``xlm-mlm-100-1280`` (Masked language modeling, 100 languages)
These checkpoints do not require language embeddings at inference time. These models are used to have generic
sentence representations, differently from previously-mentioned XLM checkpoints.
BERT
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
BERT has two checkpoints that can be used for multi-lingual tasks:
- ``bert-base-multilingual-uncased`` (Masked language modeling + Next sentence prediction, 102 languages)
- ``bert-base-multilingual-cased`` (Masked language modeling + Next sentence prediction, 104 languages)
These checkpoints do not require language embeddings at inference time. They should identify the language
used in the context and infer accordingly.
\ No newline at end of file
......@@ -53,6 +53,14 @@ Here is the full list of the currently provided pretrained models together with
| | ``bert-base-cased-finetuned-mrpc`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | The ``bert-base-cased`` model fine-tuned on MRPC |
| | | (see `details of fine-tuning in the example section <https://huggingface.co/transformers/examples.html>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-german-dbmdz-cased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on cased German text by DBMDZ |
| | | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__). |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``bert-base-german-dbmdz-uncased`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | Trained on uncased German text by DBMDZ |
| | | (see `details on dbmdz repository <https://github.com/dbmdz/german-bert>`__). |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| GPT | ``openai-gpt`` | | 12-layer, 768-hidden, 12-heads, 110M parameters. |
| | | | OpenAI GPT English model |
......@@ -128,5 +136,13 @@ Here is the full list of the currently provided pretrained models together with
| | ``distilgpt2`` | | 6-layer, 768-hidden, 12-heads, 82M parameters |
| | | | The DistilGPT2 model distilled from the GPT2 model `gpt2` checkpoint. |
| | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
| +------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| | ``distilroberta-base`` | | 6-layer, 768-hidden, 12-heads, 82M parameters |
| | | | The DistilRoBERTa model distilled from the RoBERTa model `roberta-base` checkpoint. |
| | | (see `details <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__) |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
| CTRL | ``ctrl`` | | 48-layer, 1280-hidden, 16-heads, 1.6B parameters |
| | | | Salesforce's Large-sized CTRL English model |
+-------------------+------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------+
.. <https://huggingface.co/transformers/examples.html>`__
\ No newline at end of file
......@@ -33,6 +33,8 @@ where
* ``bert-large-uncased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-cased-whole-word-masking``: 24-layer, 1024-hidden, 16-heads, 340M parameters - Trained with Whole Word Masking (mask all of the the tokens corresponding to a word at once)
* ``bert-large-uncased-whole-word-masking-finetuned-squad``: The ``bert-large-uncased-whole-word-masking`` model finetuned on SQuAD (using the ``run_bert_squad.py`` examples). Results: *exact_match: 86.91579943235573, f1: 93.1532499015869*
* ``bert-base-german-dbmdz-cased``: Trained on German data only, 12-layer, 768-hidden, 12-heads, 110M parameters `Performance Evaluation <https://github.com/dbmdz/german-bert>`__
* ``bert-base-german-dbmdz-uncased``: Trained on (uncased) German data only, 12-layer, 768-hidden, 12-heads, 110M parameters `Performance Evaluation <https://github.com/dbmdz/german-bert>`__
* ``openai-gpt``: OpenAI GPT English model, 12-layer, 768-hidden, 12-heads, 110M parameters
* ``gpt2``: OpenAI GPT-2 English model, 12-layer, 768-hidden, 12-heads, 117M parameters
* ``gpt2-medium``: OpenAI GPT-2 English model, 24-layer, 1024-hidden, 16-heads, 345M parameters
......
......@@ -5,13 +5,37 @@ similar API between the different models.
| Section | Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [TensorFlow 2.0 models on GLUE](#TensorFlow-2.0-Bert-models-on-GLUE) | Examples running BERT TensorFlow 2.0 model on the GLUE tasks.
| [Language Model fine-tuning](#language-model-fine-tuning) | Fine-tuning the library models for language modeling on a text dataset. Causal language modeling for GPT/GPT-2, masked language modeling for BERT/RoBERTa. |
| [Language Generation](#language-generation) | Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet. |
| [GLUE](#glue) | Examples running BERT/XLM/XLNet/RoBERTa on the 9 GLUE tasks. Examples feature distributed training as well as half-precision. |
| [SQuAD](#squad) | Using BERT for question answering, examples with distributed training. |
| [Multiple Choice](#multiple choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
| [SQuAD](#squad) | Using BERT/XLM/XLNet/RoBERTa for question answering, examples with distributed training. |
| [Multiple Choice](#multiple-choice) | Examples running BERT/XLNet/RoBERTa on the SWAG/RACE/ARC tasks.
| [Named Entity Recognition](#named-entity-recognition) | Using BERT for Named Entity Recognition (NER) on the CoNLL 2003 dataset, examples with distributed training. |
| [Abstractive summarization](#abstractive-summarization) | Fine-tuning the library models for abstractive summarization tasks on the CNN/Daily Mail dataset. |
## TensorFlow 2.0 Bert models on GLUE
Based on the script [`run_tf_glue.py`](https://github.com/huggingface/transformers/blob/master/examples/run_tf_glue.py).
Fine-tuning the library TensorFlow 2.0 Bert model for sequence classification on the MRPC task of the GLUE benchmark: [General Language Understanding Evaluation](https://gluebenchmark.com/).
This script has an option for mixed precision (Automatic Mixed Precision / AMP) to run models on Tensor Cores (NVIDIA Volta/Turing GPUs) and future hardware and an option for XLA, which uses the XLA compiler to reduce model runtime.
Options are toggled using `USE_XLA` or `USE_AMP` variables in the script.
These options and the below benchmark are provided by @tlkh.
Quick benchmarks from the script (no other modifications):
| GPU | Mode | Time (2nd epoch) | Val Acc (3 runs) |
| --------- | -------- | ----------------------- | ----------------------|
| Titan V | FP32 | 41s | 0.8438/0.8281/0.8333 |
| Titan V | AMP | 26s | 0.8281/0.8568/0.8411 |
| V100 | FP32 | 35s | 0.8646/0.8359/0.8464 |
| V100 | AMP | 22s | 0.8646/0.8385/0.8411 |
| 1080 Ti | FP32 | 55s | - |
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
## Language model fine-tuning
Based on the script [`run_lm_finetuning.py`](https://github.com/huggingface/transformers/blob/master/examples/run_lm_finetuning.py).
......@@ -78,7 +102,7 @@ python run_lm_finetuning.py \
Based on the script [`run_generation.py`](https://github.com/huggingface/transformers/blob/master/examples/run_generation.py).
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL and XLNet.
Conditional text generation using the auto-regressive models of the library: GPT, GPT-2, Transformer-XL, XLNet, CTRL.
A similar script is used for our official demo [Write With Transfomer](https://transformer.huggingface.co), where you
can try out the different models available in the library.
......@@ -284,17 +308,17 @@ The results are the following:
loss = 0.04755385363816904
```
##Multiple Choice
## Multiple Choice
Based on the script [`run_multiple_choice.py`]().
#### Fine-tuning on SWAG
Download [swag](https://github.com/rowanz/swagaf/tree/master/data) data
```
```bash
#training on 4 tesla V100(16GB) GPUS
export SWAG_DIR=/path/to/swag_data_dir
python ./examples/single_model_scripts/run_multiple_choice.py \
python ./examples/run_multiple_choice.py \
--model_type roberta \
--task_name swag \
--model_name_or_path roberta-base \
......@@ -391,6 +415,107 @@ exact_match = 86.91
This fine-tuned model is available as a checkpoint under the reference
`bert-large-uncased-whole-word-masking-finetuned-squad`.
## Named Entity Recognition
Based on the script [`run_ner.py`](https://github.com/huggingface/transformers/blob/master/examples/run_ner.py).
This example fine-tune Bert Multilingual on GermEval 2014 (German NER).
Details and results for the fine-tuning provided by @stefan-it.
### Data (Download and pre-processing steps)
Data can be obtained from the [GermEval 2014](https://sites.google.com/site/germeval2014ner/data) shared task page.
Here are the commands for downloading and pre-processing train, dev and test datasets. The original data format has four (tab-separated) columns, in a pre-processing step only the two relevant columns (token and outer span NER annotation) are extracted:
```bash
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-train.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > train.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-dev.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > dev.txt.tmp
curl -L 'https://sites.google.com/site/germeval2014ner/data/NER-de-test.tsv?attredirects=0&d=1' \
| grep -v "^#" | cut -f 2,3 | tr '\t' ' ' > test.txt.tmp
```
The GermEval 2014 dataset contains some strange "control character" tokens like `'\x96', '\u200e', '\x95', '\xad' or '\x80'`. One problem with these tokens is, that `BertTokenizer` returns an empty token for them, resulting in misaligned `InputExample`s. I wrote a script that a) filters these tokens and b) splits longer sentences into smaller ones (once the max. subtoken length is reached).
```bash
wget "https://raw.githubusercontent.com/stefan-it/fine-tuned-berts-seq/master/scripts/preprocess.py"
```
Let's define some variables that we need for further pre-processing steps and training the model:
```bash
export MAX_LENGTH=128
export BERT_MODEL=bert-base-multilingual-cased
```
Run the pre-processing script on training, dev and test datasets:
```bash
python3 preprocess.py train.txt.tmp $BERT_MODEL $MAX_LENGTH > train.txt
python3 preprocess.py dev.txt.tmp $BERT_MODEL $MAX_LENGTH > dev.txt
python3 preprocess.py test.txt.tmp $BERT_MODEL $MAX_LENGTH > test.txt
```
The GermEval 2014 dataset has much more labels than CoNLL-2002/2003 datasets, so an own set of labels must be used:
```bash
cat train.txt dev.txt test.txt | cut -d " " -f 2 | grep -v "^$"| sort | uniq > labels.txt
```
### Training
Additional environment variables must be set:
```bash
export OUTPUT_DIR=germeval-model
export BATCH_SIZE=32
export NUM_EPOCHS=3
export SAVE_STEPS=750
export SEED=1
```
To start training, just run:
```bash
python3 run_ner.py --data_dir ./ \
--model_type bert \
--labels ./labels.txt \
--model_name_or_path $BERT_MODEL \
--output_dir $OUTPUT_DIR \
--max_seq_length $MAX_LENGTH \
--num_train_epochs $NUM_EPOCHS \
--per_gpu_train_batch_size $BATCH_SIZE \
--save_steps $SAVE_STEPS \
--seed $SEED \
--do_train \
--do_eval \
--do_predict
```
If your GPU supports half-precision training, just add the `--fp16` flag. After training, the model will be both evaluated on development and test datasets.
### Evaluation
Evaluation on development dataset outputs the following for our example:
```bash
10/04/2019 00:42:06 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:06 - INFO - __main__ - f1 = 0.8623348017621146
10/04/2019 00:42:06 - INFO - __main__ - loss = 0.07183869666975543
10/04/2019 00:42:06 - INFO - __main__ - precision = 0.8467916366258111
10/04/2019 00:42:06 - INFO - __main__ - recall = 0.8784592370979806
```
On the test dataset the following results could be achieved:
```bash
10/04/2019 00:42:42 - INFO - __main__ - ***** Eval results *****
10/04/2019 00:42:42 - INFO - __main__ - f1 = 0.8614389652384803
10/04/2019 00:42:42 - INFO - __main__ - loss = 0.07064602487454782
10/04/2019 00:42:42 - INFO - __main__ - precision = 0.8604651162790697
10/04/2019 00:42:42 - INFO - __main__ - recall = 0.8624150210424085
```
## Abstractive summarization
Based on the script
......@@ -417,4 +542,4 @@ python run_summarization_finetuning.py \
--model_name_or_path=bert2bert \
--do_train \
--data_path=$DATA_PATH \
```
```
\ No newline at end of file
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Benchmarking the library on inference and training """
# If checking the tensors placement
# tf.debugging.set_log_device_placement(True)
from typing import List
import timeit
from transformers import is_tf_available, is_torch_available
from time import time
import argparse
import csv
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModel
if is_torch_available():
import torch
from transformers import AutoModel
from transformers import AutoConfig, AutoTokenizer
input_text = """Bent over their instruments, three hundred Fertilizers were plunged, as
the Director of Hatcheries and Conditioning entered the room, in the
scarcely breathing silence, the absent-minded, soliloquizing hum or
whistle, of absorbed concentration. A troop of newly arrived students,
very young, pink and callow, followed nervously, rather abjectly, at the
Director's heels. Each of them carried a notebook, in which, whenever
the great man spoke, he desperately scribbled. Straight from the
horse's mouth. It was a rare privilege. The D. H. C. for Central London
always made a point of personally conducting his new students round
the various departments.
"Just to give you a general idea," he would explain to them. For of
course some sort of general idea they must have, if they were to do
their work intelligently-though as little of one, if they were to be good
and happy members of society, as possible. For particulars, as every
one knows, make for virtue and happiness; generalities are intellectu-
ally necessary evils. Not philosophers but fret-sawyers and stamp col-
lectors compose the backbone of society.
"To-morrow," he would add, smiling at them with a slightly menacing
geniality, "you'll be settling down to serious work. You won't have time
for generalities. Meanwhile ..."
Meanwhile, it was a privilege. Straight from the horse's mouth into the
notebook. The boys scribbled like mad.
Tall and rather thin but upright, the Director advanced into the room.
He had a long chin and big rather prominent teeth, just covered, when
he was not talking, by his full, floridly curved lips. Old, young? Thirty?
Fifty? Fifty-five? It was hard to say. And anyhow the question didn't
arise; in this year of stability, A. F. 632, it didn't occur to you to ask it.
"I shall begin at the beginning," said the D.H.C. and the more zealous
students recorded his intention in their notebooks: Begin at the begin-
ning. "These," he waved his hand, "are the incubators." And opening
an insulated door he showed them racks upon racks of numbered test-
tubes. "The week's supply of ova. Kept," he explained, "at blood heat;
whereas the male gametes," and here he opened another door, "they
have to be kept at thirty-five instead of thirty-seven. Full blood heat
sterilizes." Rams wrapped in theremogene beget no lambs.
Still leaning against the incubators he gave them, while the pencils
scurried illegibly across the pages, a brief description of the modern
fertilizing process; spoke first, of course, of its surgical introduc-
tion-"the operation undergone voluntarily for the good of Society, not
to mention the fact that it carries a bonus amounting to six months'
salary"; continued with some account of the technique for preserving
the excised ovary alive and actively developing; passed on to a consid-
eration of optimum temperature, salinity, viscosity; referred to the liq-
uor in which the detached and ripened eggs were kept; and, leading
his charges to the work tables, actually showed them how this liquor
was drawn off from the test-tubes; how it was let out drop by drop
onto the specially warmed slides of the microscopes; how the eggs
which it contained were inspected for abnormalities, counted and
transferred to a porous receptacle; how (and he now took them to
watch the operation) this receptacle was immersed in a warm bouillon
containing free-swimming spermatozoa-at a minimum concentration
of one hundred thousand per cubic centimetre, he insisted; and how,
after ten minutes, the container was lifted out of the liquor and its
contents re-examined; how, if any of the eggs remained unfertilized, it
was again immersed, and, if necessary, yet again; how the fertilized
ova went back to the incubators; where the Alphas and Betas re-
mained until definitely bottled; while the Gammas, Deltas and Epsilons
were brought out again, after only thirty-six hours, to undergo Bo-
kanovsky's Process.
"Bokanovsky's Process," repeated the Director, and the students un-
derlined the words in their little notebooks.
One egg, one embryo, one adult-normality. But a bokanovskified egg
will bud, will proliferate, will divide. From eight to ninety-six buds, and
every bud will grow into a perfectly formed embryo, and every embryo
into a full-sized adult. Making ninety-six human beings grow where
only one grew before. Progress.
"Essentially," the D.H.C. concluded, "bokanovskification consists of a
series of arrests of development. We check the normal growth and,
paradoxically enough, the egg responds by budding."
Responds by budding. The pencils were busy.
He pointed. On a very slowly moving band a rack-full of test-tubes was
entering a large metal box, another, rack-full was emerging. Machinery
faintly purred. It took eight minutes for the tubes to go through, he
told them. Eight minutes of hard X-rays being about as much as an
egg can stand. A few died; of the rest, the least susceptible divided
into two; most put out four buds; some eight; all were returned to the
incubators, where the buds began to develop; then, after two days,
were suddenly chilled, chilled and checked. Two, four, eight, the buds
in their turn budded; and having budded were dosed almost to death
with alcohol; consequently burgeoned again and having budded-bud
out of bud out of bud-were thereafter-further arrest being generally
fatal-left to develop in peace. By which time the original egg was in a
fair way to becoming anything from eight to ninety-six embryos- a
prodigious improvement, you will agree, on nature. Identical twins-but
not in piddling twos and threes as in the old viviparous days, when an
egg would sometimes accidentally divide; actually by dozens, by
scores at a time.
"Scores," the Director repeated and flung out his arms, as though he
were distributing largesse. "Scores."
But one of the students was fool enough to ask where the advantage
lay.
"My good boy!" The Director wheeled sharply round on him. "Can't you
see? Can't you see?" He raised a hand; his expression was solemn.
"Bokanovsky's Process is one of the major instruments of social stabil-
ity!"
Major instruments of social stability.
Standard men and women; in uniform batches. The whole of a small
factory staffed with the products of a single bokanovskified egg.
"Ninety-six identical twins working ninety-six identical machines!" The
voice was almost tremulous with enthusiasm. "You really know where
you are. For the first time in history." He quoted the planetary motto.
"Community, Identity, Stability." Grand words. "If we could bo-
kanovskify indefinitely the whole problem would be solved."
Solved by standard Gammas, unvarying Deltas, uniform Epsilons. Mil-
lions of identical twins. The principle of mass production at last applied
to biology.
"But, alas," the Director shook his head, "we can't bokanovskify indefi-
nitely."
Ninety-six seemed to be the limit; seventy-two a good average. From
the same ovary and with gametes of the same male to manufacture as
many batches of identical twins as possible-that was the best (sadly a
second best) that they could do. And even that was difficult.
"For in nature it takes thirty years for two hundred eggs to reach ma-
turity. But our business is to stabilize the population at this moment,
here and now. Dribbling out twins over a quarter of a century-what
would be the use of that?"
Obviously, no use at all. But Podsnap's Technique had immensely ac-
celerated the process of ripening. They could make sure of at least a
hundred and fifty mature eggs within two years. Fertilize and bo-
kanovskify-in other words, multiply by seventy-two-and you get an
average of nearly eleven thousand brothers and sisters in a hundred
and fifty batches of identical twins, all within two years of the same
age.
"And in exceptional cases we can make one ovary yield us over fifteen
thousand adult individuals."
Beckoning to a fair-haired, ruddy young man who happened to be
passing at the moment. "Mr. Foster," he called. The ruddy young man
approached. "Can you tell us the record for a single ovary, Mr. Foster?"
"Sixteen thousand and twelve in this Centre," Mr. Foster replied with-
out hesitation. He spoke very quickly, had a vivacious blue eye, and
took an evident pleasure in quoting figures. "Sixteen thousand and
twelve; in one hundred and eighty-nine batches of identicals. But of
course they've done much better," he rattled on, "in some of the tropi-
cal Centres. Singapore has often produced over sixteen thousand five
hundred; and Mombasa has actually touched the seventeen thousand
mark. But then they have unfair advantages. You should see the way a
negro ovary responds to pituitary! It's quite astonishing, when you're
used to working with European material. Still," he added, with a laugh
(but the light of combat was in his eyes and the lift of his chin was
challenging), "still, we mean to beat them if we can. I'm working on a
wonderful Delta-Minus ovary at this moment. Only just eighteen
months old. Over twelve thousand seven hundred children already, ei-
ther decanted or in embryo. And still going strong. We'll beat them
yet."
"That's the spirit I like!" cried the Director, and clapped Mr. Foster on
the shoulder. "Come along with us, and give these boys the benefit of
your expert knowledge."
Mr. Foster smiled modestly. "With pleasure." They went.
In the Bottling Room all was harmonious bustle and ordered activity.
Flaps of fresh sow's peritoneum ready cut to the proper size came
shooting up in little lifts from the Organ Store in the sub-basement.
Whizz and then, click! the lift-hatches hew open; the bottle-liner had
only to reach out a hand, take the flap, insert, smooth-down, and be-
fore the lined bottle had had time to travel out of reach along the end-
less band, whizz, click! another flap of peritoneum had shot up from
the depths, ready to be slipped into yet another bottle, the next of that
slow interminable procession on the band.
Next to the Liners stood the Matriculators. The procession advanced;
one by one the eggs were transferred from their test-tubes to the
larger containers; deftly the peritoneal lining was slit, the morula
dropped into place, the saline solution poured in ... and already the
bottle had passed, and it was the turn of the labellers. Heredity, date
of fertilization, membership of Bokanovsky Group-details were trans-
ferred from test-tube to bottle. No longer anonymous, but named,
identified, the procession marched slowly on; on through an opening in
the wall, slowly on into the Social Predestination Room.
"Eighty-eight cubic metres of card-index," said Mr. Foster with relish,
as they entered."""
def create_setup_and_compute(model_names: List[str],
gpu: bool = True,
tensorflow: bool = False,
average_over: int = 3,
torchscript: bool = False,
xla: bool = False,
save_to_csv: bool = False,
csv_filename: str = f"results_{round(time())}.csv"):
if xla:
tf.config.optimizer.set_jit(True)
if tensorflow:
dictionary = {model_name: {} for model_name in model_names}
results = _compute_tensorflow(model_names, dictionary, average_over)
else:
device = 'cuda' if (gpu and torch.cuda.is_available()) else 'cpu'
dictionary = {model_name: {} for model_name in model_names}
results = _compute_pytorch(model_names, dictionary, average_over, device, torchscript)
print("=========== RESULTS ===========")
for model_name in model_names:
print("\t" + f"======= MODEL CHECKPOINT: {model_name} =======")
for batch_size in results[model_name]["bs"]:
print("\t\t" + f"===== BATCH SIZE: {batch_size} =====")
for slice_size in results[model_name]["ss"]:
result = results[model_name]['results'][batch_size][slice_size]
if isinstance(result, str):
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{result}")
else:
print(f"\t\t{model_name}/{batch_size}/{slice_size}: "
f"{(round(1000 * result) / 1000)}"
f"s")
if save_to_csv:
with open(csv_filename, mode='w') as csv_file:
fieldnames = ['model',
'1x8', '1x64', '1x128', '1x256', '1x512', '1x1024',
'2x8', '2x64', '2x128', '2x256', '2x512', '2x1024',
'4x8', '4x64', '4x128', '4x256', '4x512', '4x1024',
'8x8', '8x64', '8x128', '8x256', '8x512', '8x1024',
]
writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
writer.writeheader()
for model_name in model_names:
model_results = {
f'{bs}x{ss}': results[model_name]['results'][bs][ss]
for bs in results[model_name]["results"]
for ss in results[model_name]['results'][bs]
}
writer.writerow({'model': model_name, **model_results})
def _compute_pytorch(model_names, dictionary, average_over, device, torchscript):
for c, model_name in enumerate(model_names):
print(f"{c + 1} / {len(model_names)}")
config = AutoConfig.from_pretrained(model_name, torchscript=torchscript)
model = AutoModel.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_sequence = tokenizer.encode(input_text)
max_input_size = tokenizer.max_model_input_sizes[model_name]
batch_sizes = [1, 2, 4, 8]
slice_sizes = [8, 64, 128, 256, 512, 1024]
dictionary[model_name] = {"bs": batch_sizes, "ss": slice_sizes, "results": {}}
dictionary[model_name]["results"] = {i: {} for i in batch_sizes}
for batch_size in batch_sizes:
model.to(device)
model.eval()
for slice_size in slice_sizes:
if max_input_size is not None and slice_size > max_input_size:
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
else:
sequence = torch.tensor(tokenized_sequence[:slice_size], device=device).repeat(batch_size, 1)
try:
if torchscript:
print("Tracing model with sequence size", sequence.shape)
inference = torch.jit.trace(model, sequence)
inference(sequence)
else:
inference = model
inference(sequence)
print("Going through model with sequence of shape", sequence.shape)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except RuntimeError as e:
print("Doesn't fit on GPU.", e)
torch.cuda.empty_cache()
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
return dictionary
def _compute_tensorflow(model_names, dictionary, average_over):
for c, model_name in enumerate(model_names):
print(f"{c + 1} / {len(model_names)}")
config = AutoConfig.from_pretrained(model_name)
model = TFAutoModel.from_pretrained(model_name, config=config)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenized_sequence = tokenizer.encode(input_text)
max_input_size = tokenizer.max_model_input_sizes[model_name]
batch_sizes = [1, 2, 4, 8]
slice_sizes = [8, 64, 128, 256, 512, 1024]
dictionary[model_name] = {"bs": batch_sizes, "ss": slice_sizes, "results": {}}
dictionary[model_name]["results"] = {i: {} for i in batch_sizes}
print("Using model", model)
@tf.function
def inference(inputs):
return model(inputs)
for batch_size in batch_sizes:
for slice_size in slice_sizes:
if max_input_size is not None and slice_size > max_input_size:
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
else:
sequence = tf.stack([tf.squeeze(tf.constant(tokenized_sequence[:slice_size])[None, :])] * batch_size)
try:
print("Going through model with sequence of shape", sequence.shape)
# To make sure that the model is traced + that the tensors are on the appropriate device
inference(sequence)
runtimes = timeit.repeat(lambda: inference(sequence), repeat=average_over, number=3)
average_time = sum(runtimes)/float(len(runtimes)) / 3.0
dictionary[model_name]["results"][batch_size][slice_size] = average_time
except tf.errors.ResourceExhaustedError as e:
print("Doesn't fit on GPU.", e)
torch.cuda.empty_cache()
dictionary[model_name]["results"][batch_size][slice_size] = "N/A"
return dictionary
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--models", required=False, type=str, default='all', help="Model checkpoints to be provided "
"to the AutoModel classes. Leave "
"blank to benchmark the base version "
"of all available model "
"architectures.")
parser.add_argument("--torch", required=False, action="store_true", help="Benchmark the Pytorch version of the "
"models")
parser.add_argument("--torch_cuda", required=False, action="store_true", help="Pytorch only: run on available "
"cuda devices")
parser.add_argument("--torchscript", required=False, action="store_true", help="Pytorch only: trace the models "
"using torchscript")
parser.add_argument("--tensorflow", required=False, action="store_true", help="Benchmark the TensorFlow version "
"of the models. Will run on GPU if "
"the correct dependencies are "
"installed")
parser.add_argument("--xla", required=False, action="store_true", help="TensorFlow only: use XLA acceleration.")
parser.add_argument("--keras_predict", required=False, action="store_true", help="Whether to use model.predict "
"instead of model() to do a "
"forward pass.")
parser.add_argument("--save_to_csv", required=False, action="store_true", help="Save to a CSV file.")
parser.add_argument("--csv_filename", required=False, default=None, help="CSV filename used if saving results to csv.")
parser.add_argument("--average_over", required=False, default=30, type=int, help="Times an experiment will be run.")
args = parser.parse_args()
if args.models == 'all':
args.models = [
"gpt2",
"bert-base-cased",
"xlnet-base-cased",
"xlm-mlm-en-2048",
"transfo-xl-wt103",
"openai-gpt",
"distilbert-base-uncased",
"distilgpt2",
"roberta-base",
"ctrl"
]
else:
args.models = args.models.split()
print("Running with arguments", args)
if args.torch:
if is_torch_available():
create_setup_and_compute(
model_names=args.models,
tensorflow=False,
gpu=args.torch_cuda,
torchscript=args.torchscript,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
)
else:
raise ImportError("Trying to run a PyTorch benchmark but PyTorch was not found in the environment.")
if args.tensorflow:
if is_tf_available():
create_setup_and_compute(
model_names=args.models,
tensorflow=True,
xla=args.xla,
save_to_csv=args.save_to_csv,
csv_filename=args.csv_filename,
average_over=args.average_over
)
else:
raise ImportError("Trying to run a TensorFlow benchmark but TensorFlow was not found in the environment.")
if __name__ == '__main__':
main()
......@@ -31,9 +31,13 @@ import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, BertConfig,
BertForMultipleChoice, BertTokenizer)
......
# Distil*
This folder contains the original code used to train Distil* as well as examples showcasing how to use DistilBERT and DistilGPT2.
This folder contains the original code used to train Distil* as well as examples showcasing how to use DistilBERT, DistilRoBERTa and DistilGPT2.
**2019, October 3rd - Update** We release our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108) explaining our approach on **DistilBERT**. It includes updated results and further experiments. We applied the same method to GPT2 and release the weights of **DistilGPT2**. DistilGPT2 is two times faster and 33% smaller than GPT2.
**October 23rd, 2019 - Update** We release **DistilRoBERTa**: 95% of `RoBERTa-base`'s performance on GLUE, twice as fast as RoBERTa while being 35% smaller.
**October 3rd, 2019 - Update** We release our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108) explaining our approach on **DistilBERT**. It includes updated results and further experiments. We applied the same method to GPT2 and release the weights of **DistilGPT2**. DistilGPT2 is two times faster and 33% smaller than GPT2. **The paper superseeds our [previous blogpost](https://medium.com/huggingface/distilbert-8cf3380435b5) with a different distillation loss and better performances. Please use the paper as a reference when comparing/reporting results on DistilBERT.**
**September 19th, 2019 - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future!
**2019, September 19th - Update:** We fixed bugs in the code and released an upadted version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 97% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future!
## What is Distil*
Distil* is a class of compressed models that started with DistilBERT. DistilBERT stands for Distillated-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production.
We have applied the same method to GPT2 and release the weights of the compressed model. On the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test of 15.8 compared to 19.3 for DistilGPT2 (after fine-tuning on the train set).
We have applied the same method to other Transformer architectures and released the weights:
- GPT2: on the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 15.0 compared to 18.5 for **DistilGPT2** (after fine-tuning on the train set).
- RoBERTa: **DistilRoBERTa** reaches 95% of `RoBERTa-base` performance on GLUE while being twice faster and 35% smaller.
- and more to come! 🤗🤗🤗
For more information on DistilBERT, please refer to our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108). The paper superseeds our [previous blogpost](https://medium.com/huggingface/distilbert-8cf3380435b5) with a different distillation loss and better performances.
For more information on DistilBERT, please refer to our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108).
Here are the results on the dev sets of GLUE:
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2| STS-B| WNLI |
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:|
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 |
| DistilBERT | **76.8** | 49.1 | 81.8 | 90.2 | 90.2 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 |
| Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2| STS-B| WNLI |
| :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---: |
| BERT-base | **77.6** | 48.9 | 84.3 | 88.6 | 89.3 | 89.5 | 71.3 | 91.7 | 91.2 | 43.7 |
| DistilBERT | **76.8** | 49.1 | 81.8 | 90.2 | 90.2 | 89.2 | 62.9 | 92.7 | 90.7 | 44.4 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| RoBERTa-base (reported) | **83.2**/**86.4**<sup>2</sup> | 63.6 | 87.6 | 90.2 | 92.8 | 91.9 | 78.7 | 94.8 | 91.2 | 57.7<sup>3</sup> |
| DistilRoBERTa<sup>1</sup> | **79.0**/**82.3**<sup>2</sup> | 59.4 | 83.9 | 86.6 | 90.8 | 89.4 | 67.9 | 92.5 | 88.3 | 52.1 |
<sup>1</sup> We did not use the MNLI checkpoint for fine-tuning but directy perform transfer learning on the pre-trained DistilRoBERTa.
<sup>2</sup> Macro-score computed without WNLI.
<sup>3</sup> We compute this score ourselves for completeness.
## Setup
This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`.
**Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0). It is important to note that there is a small internal bug in the current version of PyTorch available on pip that causes a memory leak in our training/distillation. It has been recently fixed and will likely be integrated into the next release. For the moment, we recommend to [compile PyTorch from source](https://github.com/pytorch/pytorch#from-source). Please refer to [issue 1179](https://github.com/huggingface/transformers/issues/1179) for more details.
**Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breakings changes compared to v1.1.0).
## How to use DistilBERT
......@@ -33,7 +49,8 @@ Transformers includes two pre-trained Distil* models, currently only provided fo
- `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters.
- `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knwoledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score).
- `distilgpt2`: DistilGPT2 English language model pretrained with the supervision of `gpt2` (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset and . The model has 6 layers, 768 dimension and 12 heads, totalizing 82M (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
- `distilgpt2`: DistilGPT2 English language model pretrained with the supervision of `gpt2` (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2.
- `distilroberta-base`: DistilRoBERTa English language model pretrained with the supervision of `roberta-base` solely on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa). The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base). On average DistilRoBERTa is twice as fast as Roberta-base.
- and more to come! 🤗🤗🤗
Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models.
......@@ -47,7 +64,10 @@ outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
```
Similarly, using DistilGPT2 simply consists in calling the GPT2 classes from a different pretrained checkpoint: `model = GPT2Model.from_pretrained('distilgpt2')`.
Similarly, using the other Distil* models simply consists in calling the base classes with a different pretrained checkpoint:
- DistilGPT2: `model = GPT2Model.from_pretrained('distilgpt2')`
- DistilRoBERTa: `model = RobertaModel.from_pretrained('distilroberta-base')`
## How to train Distil*
......@@ -134,3 +154,16 @@ python -m torch.distributed.launch \
**Tips:** Starting distillated training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract.py` and `scripts/extract_distilbert.py` to create a valid initialization checkpoint and use `--student_pretrained_weights` argument to use this initialization for the distilled training!
Happy distillation!
## Citation
If you find the ressource useful, you should cite the following paper:
```
@inproceedings{sanh2019distilbert,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},
booktitle={NeurIPS EMC^2 Workshop},
year={2019}
}
```
\ No newline at end of file
......@@ -19,7 +19,6 @@ import os
import math
import psutil
import time
from tensorboardX import SummaryWriter
from tqdm import trange, tqdm
import numpy as np
import psutil
......@@ -31,6 +30,11 @@ from torch.optim import AdamW
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import RandomSampler, BatchSampler, DataLoader
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from transformers import WarmupLinearSchedule
from utils import logger
......
......@@ -30,9 +30,13 @@ from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
from torch.utils.data.distributed import DistributedSampler
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME, BertConfig,
BertForQuestionAnswering, BertTokenizer,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment