Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
228cdd6a
Unverified
Commit
228cdd6a
authored
Oct 30, 2019
by
Thomas Wolf
Committed by
GitHub
Oct 30, 2019
Browse files
Merge branch 'master' into conditional-generation
parents
3cf2020c
079bfb32
Changes
86
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1185 additions
and
129 deletions
+1185
-129
transformers/data/processors/glue.py
transformers/data/processors/glue.py
+0
-1
transformers/file_utils.py
transformers/file_utils.py
+4
-4
transformers/modeling_auto.py
transformers/modeling_auto.py
+10
-4
transformers/modeling_bert.py
transformers/modeling_bert.py
+12
-6
transformers/modeling_ctrl.py
transformers/modeling_ctrl.py
+485
-0
transformers/modeling_distilbert.py
transformers/modeling_distilbert.py
+0
-2
transformers/modeling_gpt2.py
transformers/modeling_gpt2.py
+7
-3
transformers/modeling_openai.py
transformers/modeling_openai.py
+1
-1
transformers/modeling_roberta.py
transformers/modeling_roberta.py
+79
-1
transformers/modeling_tf_auto.py
transformers/modeling_tf_auto.py
+11
-3
transformers/modeling_tf_bert.py
transformers/modeling_tf_bert.py
+0
-10
transformers/modeling_tf_ctrl.py
transformers/modeling_tf_ctrl.py
+487
-0
transformers/modeling_tf_distilbert.py
transformers/modeling_tf_distilbert.py
+0
-12
transformers/modeling_tf_gpt2.py
transformers/modeling_tf_gpt2.py
+0
-10
transformers/modeling_tf_openai.py
transformers/modeling_tf_openai.py
+0
-10
transformers/modeling_tf_pytorch_utils.py
transformers/modeling_tf_pytorch_utils.py
+2
-4
transformers/modeling_tf_roberta.py
transformers/modeling_tf_roberta.py
+53
-11
transformers/modeling_tf_transfo_xl.py
transformers/modeling_tf_transfo_xl.py
+0
-10
transformers/modeling_tf_utils.py
transformers/modeling_tf_utils.py
+22
-21
transformers/modeling_tf_xlm.py
transformers/modeling_tf_xlm.py
+12
-16
No files found.
transformers/data/processors/glue.py
View file @
228cdd6a
...
...
@@ -86,7 +86,6 @@ def glue_convert_examples_to_features(examples, tokenizer,
example
.
text_b
,
add_special_tokens
=
True
,
max_length
=
max_length
,
truncate_first_sequence
=
True
# We're truncating the first sequence in priority
)
input_ids
,
token_type_ids
=
inputs
[
"input_ids"
],
inputs
[
"token_type_ids"
]
...
...
transformers/file_utils.py
View file @
228cdd6a
...
...
@@ -27,7 +27,7 @@ logger = logging.getLogger(__name__) # pylint: disable=invalid-name
try
:
import
tensorflow
as
tf
assert
int
(
tf
.
__version__
[
0
])
>=
2
assert
hasattr
(
tf
,
'__version__'
)
and
int
(
tf
.
__version__
[
0
])
>=
2
_tf_available
=
True
# pylint: disable=invalid-name
logger
.
info
(
"TensorFlow version {} available."
.
format
(
tf
.
__version__
))
except
(
ImportError
,
AssertionError
):
...
...
@@ -246,7 +246,7 @@ def http_get(url, temp_file, proxies=None):
progress
.
close
()
def
get_from_cache
(
url
,
cache_dir
=
None
,
force_download
=
False
,
proxies
=
None
):
def
get_from_cache
(
url
,
cache_dir
=
None
,
force_download
=
False
,
proxies
=
None
,
etag_timeout
=
10
):
"""
Given a URL, look for the corresponding dataset in the local cache.
If it's not there, download it. Then return the path to the cached file.
...
...
@@ -266,12 +266,12 @@ def get_from_cache(url, cache_dir=None, force_download=False, proxies=None):
etag
=
s3_etag
(
url
,
proxies
=
proxies
)
else
:
try
:
response
=
requests
.
head
(
url
,
allow_redirects
=
True
,
proxies
=
proxies
)
response
=
requests
.
head
(
url
,
allow_redirects
=
True
,
proxies
=
proxies
,
timeout
=
etag_timeout
)
if
response
.
status_code
!=
200
:
etag
=
None
else
:
etag
=
response
.
headers
.
get
(
"ETag"
)
except
EnvironmentError
:
except
(
EnvironmentError
,
requests
.
exceptions
.
Timeout
)
:
etag
=
None
if
sys
.
version_info
[
0
]
==
2
and
etag
is
not
None
:
...
...
transformers/modeling_auto.py
View file @
228cdd6a
...
...
@@ -21,6 +21,7 @@ import logging
from
.modeling_bert
import
BertModel
,
BertForMaskedLM
,
BertForSequenceClassification
,
BertForQuestionAnswering
from
.modeling_openai
import
OpenAIGPTModel
,
OpenAIGPTLMHeadModel
from
.modeling_gpt2
import
GPT2Model
,
GPT2LMHeadModel
from
.modeling_ctrl
import
CTRLModel
,
CTRLLMHeadModel
from
.modeling_transfo_xl
import
TransfoXLModel
,
TransfoXLLMHeadModel
from
.modeling_xlnet
import
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
from
.modeling_xlm
import
XLMModel
,
XLMWithLMHeadModel
,
XLMForSequenceClassification
,
XLMForQuestionAnswering
...
...
@@ -51,6 +52,7 @@ class AutoModel(object):
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `ctrl`: CTRLModel (Salesforce CTRL model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
...
...
@@ -73,6 +75,7 @@ class AutoModel(object):
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `ctrl`: CTRLModel (Salesforce CTRL model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
...
...
@@ -149,10 +152,11 @@ class AutoModel(object):
return
XLNetModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'xlm'
in
pretrained_model_name_or_path
:
return
XLMModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'ctrl'
in
pretrained_model_name_or_path
:
return
CTRLModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
raise
ValueError
(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'"
.
format
(
pretrained_model_name_or_path
))
"'xlm', 'roberta
, 'ctrl
'"
.
format
(
pretrained_model_name_or_path
))
class
AutoModelWithLMHead
(
object
):
...
...
@@ -172,6 +176,7 @@ class AutoModelWithLMHead(object):
- contains `bert`: BertForMaskedLM (Bert model)
- contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
- contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
- contains `ctrl`: CTRLLMModel (Salesforce CTRL model)
- contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
- contains `xlnet`: XLNetLMHeadModel (XLNet model)
- contains `xlm`: XLMWithLMHeadModel (XLM model)
...
...
@@ -273,10 +278,11 @@ class AutoModelWithLMHead(object):
return
XLNetLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'xlm'
in
pretrained_model_name_or_path
:
return
XLMWithLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'ctrl'
in
pretrained_model_name_or_path
:
return
CTRLLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
raise
ValueError
(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'"
.
format
(
pretrained_model_name_or_path
))
"'xlm', 'roberta'
,'ctrl'
"
.
format
(
pretrained_model_name_or_path
))
class
AutoModelForSequenceClassification
(
object
):
...
...
transformers/modeling_bert.py
View file @
228cdd6a
...
...
@@ -46,6 +46,8 @@ BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-large-uncased-whole-word-masking-finetuned-squad'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin"
,
'bert-large-cased-whole-word-masking-finetuned-squad'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin"
,
'bert-base-cased-finetuned-mrpc'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin"
,
'bert-base-german-dbmdz-cased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin"
,
'bert-base-german-dbmdz-uncased'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin"
,
}
...
...
@@ -1194,12 +1196,16 @@ class BertForQuestionAnswering(BertPreTrainedModel):
Examples::
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
loss, start_scores, end_scores = outputs[:2]
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
input_text = "[CLS] " + question + " [SEP] " + text + " [SEP]"
input_ids = tokenizer.encode(input_text)
token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))]
start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
print(' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1]))
# a nice puppet
"""
def
__init__
(
self
,
config
):
...
...
transformers/modeling_ctrl.py
0 → 100644
View file @
228cdd6a
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CTRL model."""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
import
collections
import
json
import
logging
import
math
import
os
import
sys
from
io
import
open
import
numpy
as
np
import
torch
import
torch.nn
as
nn
from
torch.nn
import
CrossEntropyLoss
from
torch.nn.parameter
import
Parameter
from
.modeling_utils
import
PreTrainedModel
,
Conv1D
,
prune_conv1d_layer
,
SequenceSummary
from
.configuration_ctrl
import
CTRLConfig
from
.file_utils
import
add_start_docstrings
logger
=
logging
.
getLogger
(
__name__
)
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
=
{
"ctrl"
:
"https://storage.googleapis.com/sf-ctrl/pytorch/seqlen256_v1.bin"
}
def
angle_defn
(
pos
,
i
,
d_model_size
):
angle_rates
=
1
/
torch
.
pow
(
10000
,
(
2
*
(
i
//
2
))
/
d_model_size
)
return
pos
*
angle_rates
def
positional_encoding
(
position
,
d_model_size
,
dtype
):
# create the sinusoidal pattern for the positional encoding
angle_rads
=
(
angle_defn
(
torch
.
arange
(
position
,
dtype
=
dtype
).
unsqueeze
(
1
),
torch
.
arange
(
d_model_size
,
dtype
=
dtype
).
unsqueeze
(
0
),
d_model_size
))
sines
=
torch
.
sin
(
angle_rads
[:,
0
::
2
])
cosines
=
torch
.
cos
(
angle_rads
[:,
1
::
2
])
pos_encoding
=
torch
.
cat
([
sines
,
cosines
],
dim
=-
1
)
return
pos_encoding
def
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
=
None
,
head_mask
=
None
):
# calculate attention
matmul_qk
=
torch
.
matmul
(
q
,
k
.
permute
(
0
,
1
,
3
,
2
))
dk
=
k
.
shape
[
-
1
]
scaled_attention_logits
=
matmul_qk
/
np
.
sqrt
(
dk
)
if
mask
is
not
None
:
scaled_attention_logits
+=
(
mask
*
-
1e4
)
if
attention_mask
is
not
None
:
# Apply the attention mask
scaled_attention_logits
=
scaled_attention_logits
+
attention_mask
attention_weights
=
torch
.
softmax
(
scaled_attention_logits
,
dim
=-
1
)
# Mask heads if we want to
if
head_mask
is
not
None
:
attention_weights
=
attention_weights
*
head_mask
output
=
torch
.
matmul
(
attention_weights
,
v
)
return
output
,
attention_weights
class
MultiHeadAttention
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
d_model_size
,
num_heads
,
output_attentions
=
False
):
super
(
MultiHeadAttention
,
self
).
__init__
()
self
.
output_attentions
=
output_attentions
self
.
num_heads
=
num_heads
self
.
d_model_size
=
d_model_size
self
.
depth
=
int
(
d_model_size
/
self
.
num_heads
)
self
.
Wq
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wk
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
Wv
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
self
.
dense
=
torch
.
nn
.
Linear
(
d_model_size
,
d_model_size
)
def
split_into_heads
(
self
,
x
,
batch_size
):
x
=
x
.
reshape
(
batch_size
,
-
1
,
self
.
num_heads
,
self
.
depth
)
return
x
.
permute
([
0
,
2
,
1
,
3
])
def
forward
(
self
,
v
,
k
,
q
,
mask
,
layer_past
=
None
,
attention_mask
=
None
,
head_mask
=
None
):
batch_size
=
q
.
shape
[
0
]
q
=
self
.
Wq
(
q
)
k
=
self
.
Wk
(
k
)
v
=
self
.
Wv
(
v
)
q
=
self
.
split_into_heads
(
q
,
batch_size
)
k
=
self
.
split_into_heads
(
k
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
if
layer_past
is
not
None
:
past_key
,
past_value
=
layer_past
[
0
],
layer_past
[
1
]
k
=
torch
.
cat
((
past_key
,
k
),
dim
=-
2
)
v
=
torch
.
cat
((
past_value
,
v
),
dim
=-
2
)
present
=
torch
.
stack
((
k
,
v
))
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
,
head_mask
)
scaled_attention
=
output
[
0
].
permute
([
0
,
2
,
1
,
3
])
attn
=
output
[
1
]
original_size_attention
=
scaled_attention
.
reshape
(
batch_size
,
-
1
,
self
.
d_model_size
)
output
=
self
.
dense
(
original_size_attention
)
outputs
=
(
output
,
present
)
if
self
.
output_attentions
:
outputs
=
outputs
+
(
attn
,)
return
outputs
def
point_wise_feed_forward_network
(
d_model_size
,
dff
):
return
torch
.
nn
.
Sequential
(
torch
.
nn
.
Linear
(
d_model_size
,
dff
),
torch
.
nn
.
ReLU
(),
torch
.
nn
.
Linear
(
dff
,
d_model_size
))
class
EncoderLayer
(
torch
.
nn
.
Module
):
def
__init__
(
self
,
d_model_size
,
num_heads
,
dff
,
rate
=
0.1
,
output_attentions
=
False
):
super
(
EncoderLayer
,
self
).
__init__
()
self
.
multi_head_attention
=
MultiHeadAttention
(
d_model_size
,
num_heads
,
output_attentions
)
self
.
ffn
=
point_wise_feed_forward_network
(
d_model_size
,
dff
)
self
.
layernorm1
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
layernorm2
=
torch
.
nn
.
LayerNorm
(
d_model_size
,
eps
=
1e-6
)
self
.
dropout1
=
torch
.
nn
.
Dropout
(
rate
)
self
.
dropout2
=
torch
.
nn
.
Dropout
(
rate
)
def
forward
(
self
,
x
,
mask
,
layer_past
=
None
,
attention_mask
=
None
,
head_mask
=
None
):
normed
=
self
.
layernorm1
(
x
)
attn_outputs
=
self
.
multi_head_attention
(
normed
,
normed
,
normed
,
mask
,
layer_past
=
layer_past
,
attention_mask
=
attention_mask
,
head_mask
=
head_mask
)
attn_output
=
attn_outputs
[
0
]
attn_output
=
self
.
dropout1
(
attn_output
)
out1
=
x
+
attn_output
out2
=
self
.
layernorm2
(
out1
)
ffn_output
=
self
.
ffn
(
out2
)
ffn_output
=
self
.
dropout2
(
ffn_output
)
out2
=
out1
+
ffn_output
outputs
=
(
out2
,)
+
attn_outputs
[
1
:]
return
outputs
class
CTRLPreTrainedModel
(
PreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class
=
CTRLConfig
pretrained_model_archive_map
=
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix
=
"transformer"
def
_init_weights
(
self
,
module
):
""" Initialize the weights.
"""
if
isinstance
(
module
,
(
nn
.
Linear
,
nn
.
Embedding
,
Conv1D
)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module
.
weight
.
data
.
normal_
(
mean
=
0.0
,
std
=
self
.
config
.
initializer_range
)
if
isinstance
(
module
,
(
nn
.
Linear
,
Conv1D
))
and
module
.
bias
is
not
None
:
module
.
bias
.
data
.
zero_
()
elif
isinstance
(
module
,
nn
.
LayerNorm
):
module
.
bias
.
data
.
zero_
()
module
.
weight
.
data
.
fill_
(
1.0
)
CTRL_START_DOCSTRING
=
r
""" CTRL model was proposed in
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
https://www.github.com/salesforce/ctrl
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
CTRL_INPUTS_DOCSTRING
=
r
""" Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
Indices can be obtained using :class:`transformers.CTRLTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**past**:
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `past` output below). Can be used to speed up sequential decoding.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
The embeddings from these tokens will be summed with the respective token embeddings.
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@
add_start_docstrings
(
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top."
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
class
CTRLModel
(
CTRLPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
):
super
(
CTRLModel
,
self
).
__init__
(
config
)
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
output_attentions
=
config
.
output_attentions
self
.
output_past
=
config
.
output_past
self
.
d_model_size
=
config
.
n_embd
self
.
num_layers
=
config
.
n_layer
self
.
pos_encoding
=
positional_encoding
(
config
.
n_positions
,
self
.
d_model_size
,
torch
.
float
)
self
.
w
=
nn
.
Embedding
(
config
.
vocab_size
,
config
.
n_embd
)
self
.
dropout
=
nn
.
Dropout
(
config
.
embd_pdrop
)
self
.
h
=
nn
.
ModuleList
([
EncoderLayer
(
config
.
n_embd
,
config
.
n_head
,
config
.
dff
,
config
.
resid_pdrop
,
config
.
output_attentions
)
for
_
in
range
(
config
.
n_layer
)])
self
.
layernorm
=
nn
.
LayerNorm
(
config
.
n_embd
,
eps
=
config
.
layer_norm_epsilon
)
self
.
init_weights
()
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
self
.
w
=
self
.
_get_resized_embeddings
(
self
.
w
,
new_num_tokens
)
return
self
.
w
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for
layer
,
heads
in
heads_to_prune
.
items
():
self
.
h
[
layer
].
attn
.
prune_heads
(
heads
)
def
forward
(
self
,
input_ids
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
):
input_shape
=
input_ids
.
size
()
input_ids
=
input_ids
.
view
(
-
1
,
input_shape
[
-
1
])
if
past
is
None
:
past_length
=
0
past
=
[
None
]
*
len
(
self
.
h
)
else
:
past_length
=
past
[
0
][
0
].
size
(
-
2
)
if
position_ids
is
None
:
position_ids
=
torch
.
arange
(
past_length
,
input_ids
.
size
(
-
1
)
+
past_length
,
dtype
=
torch
.
long
,
device
=
input_ids
.
device
)
position_ids
=
position_ids
.
unsqueeze
(
0
).
expand_as
(
input_ids
)
# Attention mask.
if
attention_mask
is
not
None
:
attention_mask
=
attention_mask
.
view
(
-
1
,
input_shape
[
-
1
])
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask
=
attention_mask
.
unsqueeze
(
1
).
unsqueeze
(
2
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask
=
attention_mask
.
to
(
dtype
=
next
(
self
.
parameters
()).
dtype
)
# fp16 compatibility
attention_mask
=
(
1.0
-
attention_mask
)
*
-
10000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
if
head_mask
is
not
None
:
if
head_mask
.
dim
()
==
1
:
head_mask
=
head_mask
.
unsqueeze
(
0
).
unsqueeze
(
0
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
head_mask
=
head_mask
.
expand
(
self
.
config
.
n_layer
,
-
1
,
-
1
,
-
1
,
-
1
)
elif
head_mask
.
dim
()
==
2
:
head_mask
=
head_mask
.
unsqueeze
(
1
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
# We can specify head_mask for each layer
head_mask
=
head_mask
.
to
(
dtype
=
next
(
self
.
parameters
()).
dtype
)
# switch to fload if need + fp16 compatibility
else
:
head_mask
=
[
None
]
*
self
.
config
.
n_layer
if
token_type_ids
is
not
None
:
token_type_ids
=
token_type_ids
.
view
(
-
1
,
input_shape
[
-
1
])
token_type_embeds
=
self
.
w
(
token_type_ids
)
token_type_embeds
*=
np
.
sqrt
(
self
.
d_model_size
)
else
:
token_type_embeds
=
0
position_ids
=
position_ids
.
view
(
-
1
,
input_shape
[
-
1
])
inputs_embeds
=
self
.
w
(
input_ids
)
# inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
seq_len
=
input_ids
.
shape
[
-
1
]
mask
=
torch
.
triu
(
torch
.
ones
(
seq_len
,
seq_len
),
1
).
to
(
inputs_embeds
.
device
)
inputs_embeds
*=
np
.
sqrt
(
self
.
d_model_size
)
pos_embeds
=
self
.
pos_encoding
[
position_ids
,
:].
to
(
inputs_embeds
.
device
)
hidden_states
=
inputs_embeds
+
pos_embeds
+
token_type_embeds
hidden_states
=
self
.
dropout
(
hidden_states
)
output_shape
=
input_shape
+
(
inputs_embeds
.
size
(
-
1
),)
presents
=
()
all_hidden_states
=
()
all_attentions
=
[]
for
i
,
(
h
,
layer_past
)
in
enumerate
(
zip
(
self
.
h
,
past
)):
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
hidden_states
.
view
(
*
output_shape
),)
outputs
=
h
(
hidden_states
,
mask
,
layer_past
=
layer_past
,
attention_mask
=
attention_mask
,
head_mask
=
head_mask
[
i
])
hidden_states
,
present
=
outputs
[:
2
]
if
self
.
output_past
:
presents
=
presents
+
(
present
,)
if
self
.
output_attentions
:
all_attentions
.
append
(
outputs
[
2
])
hidden_states
=
self
.
layernorm
(
hidden_states
)
hidden_states
=
hidden_states
.
view
(
*
output_shape
)
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
hidden_states
,)
outputs
=
(
hidden_states
,)
if
self
.
output_past
:
outputs
=
outputs
+
(
presents
,)
if
self
.
output_hidden_states
:
outputs
=
outputs
+
(
all_hidden_states
,)
if
self
.
output_attentions
:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape
=
input_shape
[:
-
1
]
+
(
-
1
,)
+
all_attentions
[
0
].
shape
[
-
2
:]
all_attentions
=
tuple
(
t
.
view
(
*
attention_output_shape
)
for
t
in
all_attentions
)
outputs
=
outputs
+
(
all_attentions
,)
return
outputs
@
add_start_docstrings
(
"""The CTRL Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
class
CTRLLMHeadModel
(
CTRLPreTrainedModel
):
r
"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for language modeling.
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
All labels set to ``-1`` are ignored (masked), the loss is only
computed for labels in ``[0, ..., config.vocab_size]``
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Language modeling loss.
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import torch
from transformers import CTRLTokenizer, CTRLLMHeadModel
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = CTRLLMHeadModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
):
super
(
CTRLLMHeadModel
,
self
).
__init__
(
config
)
self
.
transformer
=
CTRLModel
(
config
)
self
.
lm_head
=
nn
.
Linear
(
config
.
n_embd
,
config
.
vocab_size
,
bias
=
True
)
self
.
init_weights
()
self
.
tie_weights
()
def
tie_weights
(
self
):
""" Make sure we are sharing the input and output embeddings.
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
"""
self
.
_tie_or_clone_weights
(
self
.
lm_head
,
self
.
transformer
.
w
)
def
forward
(
self
,
input_ids
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
labels
=
None
):
transformer_outputs
=
self
.
transformer
(
input_ids
,
past
=
past
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
position_ids
=
position_ids
,
head_mask
=
head_mask
)
hidden_states
=
transformer_outputs
[
0
]
lm_logits
=
self
.
lm_head
(
hidden_states
)
outputs
=
(
lm_logits
,)
+
transformer_outputs
[
1
:]
if
labels
is
not
None
:
# Shift so that tokens < n predict n
shift_logits
=
lm_logits
[...,
:
-
1
,
:].
contiguous
()
shift_labels
=
labels
[...,
1
:].
contiguous
()
# Flatten the tokens
loss_fct
=
CrossEntropyLoss
(
ignore_index
=-
1
)
loss
=
loss_fct
(
shift_logits
.
view
(
-
1
,
shift_logits
.
size
(
-
1
)),
shift_labels
.
view
(
-
1
))
outputs
=
(
loss
,)
+
outputs
return
outputs
# (loss), lm_logits, presents, (all hidden_states), (attentions)
transformers/modeling_distilbert.py
View file @
228cdd6a
...
...
@@ -159,8 +159,6 @@ class MultiHeadSelfAttention(nn.Module):
dim_per_head
=
self
.
dim
//
self
.
n_heads
assert
2
<=
mask
.
dim
()
<=
3
causal
=
(
mask
.
dim
()
==
3
)
mask_reshp
=
(
bs
,
1
,
1
,
k_length
)
def
shape
(
x
):
...
...
transformers/modeling_gpt2.py
View file @
228cdd6a
...
...
@@ -347,6 +347,7 @@ class GPT2Model(GPT2PreTrainedModel):
super
(
GPT2Model
,
self
).
__init__
(
config
)
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
output_attentions
=
config
.
output_attentions
self
.
output_past
=
config
.
output_past
self
.
wte
=
nn
.
Embedding
(
config
.
vocab_size
,
config
.
n_embd
)
self
.
wpe
=
nn
.
Embedding
(
config
.
n_positions
,
config
.
n_embd
)
...
...
@@ -440,7 +441,8 @@ class GPT2Model(GPT2PreTrainedModel):
head_mask
=
head_mask
[
i
])
hidden_states
,
present
=
outputs
[:
2
]
presents
=
presents
+
(
present
,)
if
self
.
output_past
:
presents
=
presents
+
(
present
,)
if
self
.
output_attentions
:
all_attentions
.
append
(
outputs
[
2
])
...
...
@@ -452,7 +454,9 @@ class GPT2Model(GPT2PreTrainedModel):
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
hidden_states
,)
outputs
=
(
hidden_states
,
presents
)
outputs
=
(
hidden_states
,)
if
self
.
output_past
:
outputs
=
outputs
+
(
presents
,)
if
self
.
output_hidden_states
:
outputs
=
outputs
+
(
all_hidden_states
,)
if
self
.
output_attentions
:
...
...
@@ -460,7 +464,7 @@ class GPT2Model(GPT2PreTrainedModel):
attention_output_shape
=
input_shape
[:
-
1
]
+
(
-
1
,)
+
all_attentions
[
0
].
shape
[
-
2
:]
all_attentions
=
tuple
(
t
.
view
(
*
attention_output_shape
)
for
t
in
all_attentions
)
outputs
=
outputs
+
(
all_attentions
,)
return
outputs
# last hidden state, presents, (all hidden_states), (attentions)
return
outputs
# last hidden state,
(
presents
)
, (all hidden_states), (attentions)
@
add_start_docstrings
(
"""The GPT2 Model transformer with a language modeling head on top
...
...
transformers/modeling_openai.py
View file @
228cdd6a
...
...
@@ -170,7 +170,7 @@ class Attention(nn.Module):
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b
=
self
.
bias
[:,
:,
:
w
.
size
(
-
2
),
:
w
.
size
(
-
1
)]
w
=
w
*
b
+
-
1e
9
*
(
1
-
b
)
w
=
w
*
b
+
-
1e
4
*
(
1
-
b
)
if
attention_mask
is
not
None
:
# Apply the attention mask
...
...
transformers/modeling_roberta.py
View file @
228cdd6a
...
...
@@ -34,6 +34,7 @@ ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'roberta-base'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin"
,
'roberta-large'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin"
,
'roberta-large-mnli'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin"
,
'distilroberta-base'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-pytorch_model.bin"
,
}
class
RobertaEmbeddings
(
BertEmbeddings
):
...
...
@@ -172,7 +173,8 @@ class RobertaModel(BertModel):
if
input_ids
[:,
0
].
sum
().
item
()
!=
0
:
logger
.
warning
(
"A sequence with no special tokens has been passed to the RoBERTa model. "
"This model requires special tokens in order to work. "
"Please specify add_special_tokens=True in your encoding."
)
"Please specify add_special_tokens=True in your tokenize.encode()"
"or tokenizer.convert_tokens_to_ids()."
)
return
super
(
RobertaModel
,
self
).
forward
(
input_ids
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
...
...
@@ -341,6 +343,7 @@ class RobertaForSequenceClassification(BertPreTrainedModel):
return
outputs
# (loss), logits, (hidden_states), (attentions)
@
add_start_docstrings
(
"""Roberta Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """
,
ROBERTA_START_DOCSTRING
,
ROBERTA_INPUTS_DOCSTRING
)
...
...
@@ -449,6 +452,81 @@ class RobertaForMultipleChoice(BertPreTrainedModel):
return
outputs
# (loss), reshaped_logits, (hidden_states), (attentions)
@
add_start_docstrings
(
"""Roberta Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """
,
ROBERTA_START_DOCSTRING
,
ROBERTA_INPUTS_DOCSTRING
)
class
RobertaForTokenClassification
(
BertPreTrainedModel
):
r
"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForTokenClassification.from_pretrained('roberta-base')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
"""
config_class
=
RobertaConfig
pretrained_model_archive_map
=
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix
=
"roberta"
def
__init__
(
self
,
config
):
super
(
RobertaForTokenClassification
,
self
).
__init__
(
config
)
self
.
num_labels
=
config
.
num_labels
self
.
roberta
=
RobertaModel
(
config
)
self
.
dropout
=
nn
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
num_labels
)
self
.
init_weights
()
def
forward
(
self
,
input_ids
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
labels
=
None
):
outputs
=
self
.
roberta
(
input_ids
,
attention_mask
=
attention_mask
,
token_type_ids
=
token_type_ids
,
position_ids
=
position_ids
,
head_mask
=
head_mask
)
sequence_output
=
outputs
[
0
]
sequence_output
=
self
.
dropout
(
sequence_output
)
logits
=
self
.
classifier
(
sequence_output
)
outputs
=
(
logits
,)
+
outputs
[
2
:]
# add hidden states and attention if they are here
if
labels
is
not
None
:
loss_fct
=
CrossEntropyLoss
()
# Only keep active parts of the loss
if
attention_mask
is
not
None
:
active_loss
=
attention_mask
.
view
(
-
1
)
==
1
active_logits
=
logits
.
view
(
-
1
,
self
.
num_labels
)[
active_loss
]
active_labels
=
labels
.
view
(
-
1
)[
active_loss
]
loss
=
loss_fct
(
active_logits
,
active_labels
)
else
:
loss
=
loss_fct
(
logits
.
view
(
-
1
,
self
.
num_labels
),
labels
.
view
(
-
1
))
outputs
=
(
loss
,)
+
outputs
return
outputs
# (loss), scores, (hidden_states), (attentions)
class
RobertaClassificationHead
(
nn
.
Module
):
"""Head for sentence-level classification tasks."""
...
...
transformers/modeling_tf_auto.py
View file @
228cdd6a
...
...
@@ -26,6 +26,7 @@ from .modeling_tf_xlnet import TFXLNetModel, TFXLNetLMHeadModel, TFXLNetForSeque
from
.modeling_tf_xlm
import
TFXLMModel
,
TFXLMWithLMHeadModel
,
TFXLMForSequenceClassification
,
TFXLMForQuestionAnsweringSimple
from
.modeling_tf_roberta
import
TFRobertaModel
,
TFRobertaForMaskedLM
,
TFRobertaForSequenceClassification
from
.modeling_tf_distilbert
import
TFDistilBertModel
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForMaskedLM
,
TFDistilBertForSequenceClassification
from
.modeling_tf_ctrl
import
TFCTRLModel
,
TFCTRLLMHeadModel
from
.file_utils
import
add_start_docstrings
...
...
@@ -52,6 +53,7 @@ class TFAutoModel(object):
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
- contains `xlnet`: TFXLNetModel (XLNet model)
- contains `xlm`: TFXLMModel (XLM model)
- contains `ctrl`: TFCTRLModel (CTRL model)
This class cannot be instantiated using `__init__()` (throws an error).
"""
...
...
@@ -73,7 +75,7 @@ class TFAutoModel(object):
- contains `gpt2`: TFGPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TFTransfoXLModel (Transformer-XL model)
- contains `xlnet`: TFXLNetModel (XLNet model)
- contains `
xlm
`: TF
XLM
Model (
XLM
model)
- contains `
ctrl
`: TF
CTRL
Model (
CTRL
model)
Params:
pretrained_model_name_or_path: either:
...
...
@@ -147,10 +149,12 @@ class TFAutoModel(object):
return
TFXLNetModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'xlm'
in
pretrained_model_name_or_path
:
return
TFXLMModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'ctrl'
in
pretrained_model_name_or_path
:
return
TFCTRLModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
raise
ValueError
(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'"
.
format
(
pretrained_model_name_or_path
))
"'xlm', 'roberta'
, 'ctrl'
"
.
format
(
pretrained_model_name_or_path
))
class
TFAutoModelWithLMHead
(
object
):
...
...
@@ -173,6 +177,7 @@ class TFAutoModelWithLMHead(object):
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
- contains `xlm`: TFXLMWithLMHeadModel (XLM model)
- contains `ctrl`: TFCTRLLMHeadModel (CTRL model)
This class cannot be instantiated using `__init__()` (throws an error).
"""
...
...
@@ -198,6 +203,7 @@ class TFAutoModelWithLMHead(object):
- contains `transfo-xl`: TFTransfoXLLMHeadModel (Transformer-XL model)
- contains `xlnet`: TFXLNetLMHeadModel (XLNet model)
- contains `xlm`: TFXLMWithLMHeadModel (XLM model)
- contains `ctrl`: TFCTRLLMHeadModel (CTRL model)
Params:
pretrained_model_name_or_path: either:
...
...
@@ -271,10 +277,12 @@ class TFAutoModelWithLMHead(object):
return
TFXLNetLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'xlm'
in
pretrained_model_name_or_path
:
return
TFXLMWithLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
elif
'ctrl'
in
pretrained_model_name_or_path
:
return
TFCTRLLMHeadModel
.
from_pretrained
(
pretrained_model_name_or_path
,
*
model_args
,
**
kwargs
)
raise
ValueError
(
"Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'"
.
format
(
pretrained_model_name_or_path
))
"'xlm', 'roberta'
, 'ctrl'
"
.
format
(
pretrained_model_name_or_path
))
class
TFAutoModelForSequenceClassification
(
object
):
...
...
transformers/modeling_tf_bert.py
View file @
228cdd6a
...
...
@@ -30,7 +30,6 @@ import tensorflow as tf
from
.configuration_bert
import
BertConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
get_initializer
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -52,14 +51,6 @@ TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
}
def
load_bert_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
tf_inputs
=
tf
.
constant
(
inputs_list
)
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
def
gelu
(
x
):
""" Gaussian Error Linear Unit.
Original Implementation of the gelu activation function in Google Bert repo when initially created.
...
...
@@ -545,7 +536,6 @@ class TFBertPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
BertConfig
pretrained_model_archive_map
=
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_bert_pt_weights_in_tf2
base_model_prefix
=
"bert"
...
...
transformers/modeling_tf_ctrl.py
0 → 100644
View file @
228cdd6a
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 CTRL model."""
from
__future__
import
absolute_import
,
division
,
print_function
,
unicode_literals
import
logging
import
os
import
sys
from
io
import
open
import
numpy
as
np
import
tensorflow
as
tf
from
.configuration_ctrl
import
CTRLConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
get_initializer
,
shape_list
,
TFSharedEmbeddings
from
.file_utils
import
add_start_docstrings
logger
=
logging
.
getLogger
(
__name__
)
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
=
{
"ctrl"
:
"https://s3.amazonaws.com/models.huggingface.co/bert/ctrl-tf_model.h5"
}
def
angle_defn
(
pos
,
i
,
d_model_size
):
angle_rates
=
1
/
np
.
power
(
10000
,
(
2
*
(
i
//
2
))
/
np
.
float32
(
d_model_size
))
return
pos
*
angle_rates
def
positional_encoding
(
position
,
d_model_size
):
# create the sinusoidal pattern for the positional encoding
angle_rads
=
angle_defn
(
np
.
arange
(
position
)[:,
np
.
newaxis
],
np
.
arange
(
d_model_size
)[
np
.
newaxis
,
:],
d_model_size
)
sines
=
np
.
sin
(
angle_rads
[:,
0
::
2
])
cosines
=
np
.
cos
(
angle_rads
[:,
1
::
2
])
# pos_encoding = tf.cast(np.concatenate([sines, cosines], axis=-1)[np.newaxis, ...], dtype=tf.float32)
pos_encoding
=
tf
.
cast
(
np
.
concatenate
([
sines
,
cosines
],
axis
=-
1
),
dtype
=
tf
.
float32
)
return
pos_encoding
def
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
=
None
,
head_mask
=
None
):
# calculate attention
matmul_qk
=
tf
.
matmul
(
q
,
k
,
transpose_b
=
True
)
dk
=
tf
.
cast
(
shape_list
(
k
)[
-
1
],
tf
.
float32
)
scaled_attention_logits
=
matmul_qk
/
tf
.
math
.
sqrt
(
dk
)
if
mask
is
not
None
:
scaled_attention_logits
+=
(
mask
*
-
1e4
)
if
attention_mask
is
not
None
:
# Apply the attention mask
scaled_attention_logits
=
scaled_attention_logits
+
attention_mask
attention_weights
=
tf
.
nn
.
softmax
(
scaled_attention_logits
,
axis
=-
1
)
# Mask heads if we want to
if
head_mask
is
not
None
:
attention_weights
=
attention_weights
*
head_mask
output
=
tf
.
matmul
(
attention_weights
,
v
)
return
output
,
attention_weights
class
TFMultiHeadAttention
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
d_model_size
,
num_heads
,
output_attentions
=
False
,
**
kwargs
):
super
(
TFMultiHeadAttention
,
self
).
__init__
(
**
kwargs
)
self
.
output_attentions
=
output_attentions
self
.
num_heads
=
num_heads
self
.
d_model_size
=
d_model_size
self
.
depth
=
int
(
d_model_size
/
self
.
num_heads
)
self
.
Wq
=
tf
.
keras
.
layers
.
Dense
(
d_model_size
,
name
=
'Wq'
)
self
.
Wk
=
tf
.
keras
.
layers
.
Dense
(
d_model_size
,
name
=
'Wk'
)
self
.
Wv
=
tf
.
keras
.
layers
.
Dense
(
d_model_size
,
name
=
'Wv'
)
self
.
dense
=
tf
.
keras
.
layers
.
Dense
(
d_model_size
,
name
=
'dense'
)
def
split_into_heads
(
self
,
x
,
batch_size
):
x
=
tf
.
reshape
(
x
,
(
batch_size
,
-
1
,
self
.
num_heads
,
self
.
depth
))
return
tf
.
transpose
(
x
,
perm
=
[
0
,
2
,
1
,
3
])
def
call
(
self
,
inputs
,
training
=
False
):
v
,
k
,
q
,
mask
,
layer_past
,
attention_mask
,
head_mask
=
inputs
batch_size
=
q
.
shape
[
0
]
q
=
self
.
Wq
(
q
)
k
=
self
.
Wk
(
k
)
v
=
self
.
Wv
(
v
)
q
=
self
.
split_into_heads
(
q
,
batch_size
)
k
=
self
.
split_into_heads
(
k
,
batch_size
)
v
=
self
.
split_into_heads
(
v
,
batch_size
)
if
layer_past
is
not
None
:
past_key
,
past_value
=
tf
.
unstack
(
layer_past
,
axis
=
1
)
k
=
tf
.
concat
((
past_key
,
k
),
dim
=-
2
)
v
=
tf
.
concat
((
past_value
,
v
),
dim
=-
2
)
present
=
tf
.
stack
((
k
,
v
),
axis
=
1
)
output
=
scaled_dot_product_attention
(
q
,
k
,
v
,
mask
,
attention_mask
,
head_mask
)
scaled_attention
=
tf
.
transpose
(
output
[
0
],
perm
=
[
0
,
2
,
1
,
3
])
attn
=
output
[
1
]
original_size_attention
=
tf
.
reshape
(
scaled_attention
,
(
batch_size
,
-
1
,
self
.
d_model_size
))
output
=
self
.
dense
(
original_size_attention
)
outputs
=
(
output
,
present
)
if
self
.
output_attentions
:
outputs
=
outputs
+
(
attn
,)
return
outputs
def
point_wise_feed_forward_network
(
d_model_size
,
dff
,
name
=
""
):
return
tf
.
keras
.
Sequential
([
tf
.
keras
.
layers
.
Dense
(
dff
,
activation
=
'relu'
,
name
=
"0"
),
tf
.
keras
.
layers
.
Dense
(
d_model_size
,
name
=
"2"
)
],
name
=
"ffn"
)
class
TFEncoderLayer
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
d_model_size
,
num_heads
,
dff
,
rate
=
0.1
,
layer_norm_epsilon
=
1e-6
,
output_attentions
=
False
,
**
kwargs
):
super
(
TFEncoderLayer
,
self
).
__init__
(
**
kwargs
)
self
.
multi_head_attention
=
TFMultiHeadAttention
(
d_model_size
,
num_heads
,
output_attentions
,
name
=
"multi_head_attention"
)
self
.
ffn
=
point_wise_feed_forward_network
(
d_model_size
,
dff
,
name
=
"ffn"
)
self
.
layernorm1
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
layer_norm_epsilon
,
name
=
"layernorm1"
)
self
.
layernorm2
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
layer_norm_epsilon
,
name
=
"layernorm2"
)
self
.
dropout1
=
tf
.
keras
.
layers
.
Dropout
(
rate
)
self
.
dropout2
=
tf
.
keras
.
layers
.
Dropout
(
rate
)
def
call
(
self
,
inputs
,
training
=
False
):
x
,
mask
,
layer_past
,
attention_mask
,
head_mask
=
inputs
normed
=
self
.
layernorm1
(
x
)
attn_outputs
=
self
.
multi_head_attention
([
normed
,
normed
,
normed
,
mask
,
layer_past
,
attention_mask
,
head_mask
],
training
=
training
)
attn_output
=
attn_outputs
[
0
]
attn_output
=
self
.
dropout1
(
attn_output
,
training
=
training
)
out1
=
x
+
attn_output
out2
=
self
.
layernorm2
(
out1
)
ffn_output
=
self
.
ffn
(
out2
)
ffn_output
=
self
.
dropout2
(
ffn_output
,
training
=
training
)
out2
=
out1
+
ffn_output
outputs
=
(
out2
,)
+
attn_outputs
[
1
:]
return
outputs
class
TFCTRLMainLayer
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFCTRLMainLayer
,
self
).
__init__
(
**
kwargs
)
self
.
output_hidden_states
=
config
.
output_hidden_states
self
.
output_attentions
=
config
.
output_attentions
self
.
output_past
=
config
.
output_past
self
.
d_model_size
=
config
.
n_embd
self
.
num_layers
=
config
.
n_layer
self
.
pos_encoding
=
positional_encoding
(
config
.
n_positions
,
self
.
d_model_size
)
self
.
w
=
TFSharedEmbeddings
(
config
.
vocab_size
,
config
.
n_embd
,
initializer_range
=
config
.
initializer_range
,
name
=
"w"
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
embd_pdrop
)
self
.
h
=
[
TFEncoderLayer
(
config
.
n_embd
,
config
.
n_head
,
config
.
dff
,
config
.
resid_pdrop
,
config
.
layer_norm_epsilon
,
config
.
output_attentions
,
name
=
'h_._{}'
.
format
(
i
))
for
i
in
range
(
config
.
n_layer
)]
self
.
layernorm
=
tf
.
keras
.
layers
.
LayerNormalization
(
epsilon
=
config
.
layer_norm_epsilon
,
name
=
"layernorm"
)
def
_resize_token_embeddings
(
self
,
new_num_tokens
):
raise
NotImplementedError
def
_prune_heads
(
self
,
heads_to_prune
):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
raise
NotImplementedError
def
call
(
self
,
inputs
,
past
=
None
,
attention_mask
=
None
,
token_type_ids
=
None
,
position_ids
=
None
,
head_mask
=
None
,
training
=
False
):
if
isinstance
(
inputs
,
(
tuple
,
list
)):
input_ids
=
inputs
[
0
]
past
=
inputs
[
1
]
if
len
(
inputs
)
>
1
else
past
attention_mask
=
inputs
[
2
]
if
len
(
inputs
)
>
2
else
attention_mask
token_type_ids
=
inputs
[
3
]
if
len
(
inputs
)
>
3
else
token_type_ids
position_ids
=
inputs
[
4
]
if
len
(
inputs
)
>
4
else
position_ids
head_mask
=
inputs
[
5
]
if
len
(
inputs
)
>
5
else
head_mask
assert
len
(
inputs
)
<=
6
,
"Too many inputs."
elif
isinstance
(
inputs
,
dict
):
input_ids
=
inputs
.
get
(
'input_ids'
)
past
=
inputs
.
get
(
'past'
,
past
)
attention_mask
=
inputs
.
get
(
'attention_mask'
,
attention_mask
)
token_type_ids
=
inputs
.
get
(
'token_type_ids'
,
token_type_ids
)
position_ids
=
inputs
.
get
(
'position_ids'
,
position_ids
)
head_mask
=
inputs
.
get
(
'head_mask'
,
head_mask
)
assert
len
(
inputs
)
<=
6
,
"Too many inputs."
else
:
input_ids
=
inputs
input_shape
=
shape_list
(
input_ids
)
input_ids
=
tf
.
reshape
(
input_ids
,
[
-
1
,
input_shape
[
-
1
]])
if
past
is
None
:
past_length
=
0
past
=
[
None
]
*
len
(
self
.
h
)
else
:
past_length
=
shape_list
(
past
[
0
][
0
])[
-
2
]
if
position_ids
is
None
:
position_ids
=
tf
.
range
(
past_length
,
shape_list
(
input_ids
)[
-
1
]
+
past_length
,
dtype
=
tf
.
int32
)[
tf
.
newaxis
,
:]
position_ids
=
tf
.
tile
(
position_ids
,
[
shape_list
(
input_ids
)[
0
],
1
])
# Attention mask.
if
attention_mask
is
not
None
:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask
=
attention_mask
[:,
tf
.
newaxis
,
tf
.
newaxis
,
:]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask
=
tf
.
cast
(
attention_mask
,
tf
.
float32
)
attention_mask
=
(
1.0
-
attention_mask
)
*
-
10000.0
else
:
attention_mask
=
None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
if
head_mask
is
not
None
:
raise
NotImplementedError
else
:
head_mask
=
[
None
]
*
self
.
num_layers
if
token_type_ids
is
not
None
:
token_type_ids
=
tf
.
reshape
(
token_type_ids
,
[
-
1
,
shape_list
(
token_type_ids
)[
-
1
]])
token_type_embeds
=
self
.
w
(
token_type_ids
,
mode
=
'embedding'
)
token_type_embeds
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
tf
.
float32
))
else
:
token_type_embeds
=
0
position_ids
=
tf
.
reshape
(
position_ids
,
[
-
1
,
shape_list
(
position_ids
)[
-
1
]])
inputs_embeds
=
self
.
w
(
input_ids
,
mode
=
'embedding'
)
# x = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
seq_len
=
input_shape
[
-
1
]
mask
=
1
-
tf
.
linalg
.
band_part
(
tf
.
ones
((
seq_len
,
seq_len
)),
-
1
,
0
)
inputs_embeds
*=
tf
.
math
.
sqrt
(
tf
.
cast
(
self
.
d_model_size
,
tf
.
float32
))
pos_embeds
=
tf
.
gather
(
self
.
pos_encoding
,
position_ids
)
hidden_states
=
inputs_embeds
+
pos_embeds
+
token_type_embeds
hidden_states
=
self
.
dropout
(
hidden_states
,
training
=
training
)
output_shape
=
input_shape
+
[
shape_list
(
hidden_states
)[
-
1
]]
presents
=
()
all_hidden_states
=
()
all_attentions
=
[]
for
i
,
(
h
,
layer_past
)
in
enumerate
(
zip
(
self
.
h
,
past
)):
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
tf
.
reshape
(
hidden_states
,
output_shape
),)
outputs
=
h
([
hidden_states
,
mask
,
layer_past
,
attention_mask
,
head_mask
[
i
]],
training
=
training
)
hidden_states
,
present
=
outputs
[:
2
]
if
self
.
output_past
:
presents
=
presents
+
(
present
,)
if
self
.
output_attentions
:
all_attentions
.
append
(
outputs
[
2
])
hidden_states
=
self
.
layernorm
(
hidden_states
)
hidden_states
=
tf
.
reshape
(
hidden_states
,
output_shape
)
if
self
.
output_hidden_states
:
all_hidden_states
=
all_hidden_states
+
(
hidden_states
,)
outputs
=
(
hidden_states
,)
if
self
.
output_past
:
outputs
=
outputs
+
(
presents
,)
if
self
.
output_hidden_states
:
outputs
=
outputs
+
(
all_hidden_states
,)
if
self
.
output_attentions
:
# let the number of heads free (-1) so we can extract attention even after head pruning
attention_output_shape
=
input_shape
[:
-
1
]
+
[
-
1
]
+
shape_list
(
all_attentions
[
0
])[
-
2
:]
all_attentions
=
tuple
(
tf
.
reshape
(
t
,
attention_output_shape
)
for
t
in
all_attentions
)
outputs
=
outputs
+
(
all_attentions
,)
return
outputs
class
TFCTRLPreTrainedModel
(
TFPreTrainedModel
):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class
=
CTRLConfig
pretrained_model_archive_map
=
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
base_model_prefix
=
"transformer"
CTRL_START_DOCSTRING
=
r
""" CTRL model was proposed in
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
https://www.github.com/salesforce/ctrl
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
CTRL_INPUTS_DOCSTRING
=
r
""" Inputs:
**input_ids**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on
the right rather than the left.
Indices can be obtained using :class:`transformers.CTRLTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**past**:
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `past` output below). Can be used to speed up sequential decoding.
**attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**token_type_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
The embeddings from these tokens will be summed with the respective token embeddings.
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
**position_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
**head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@
add_start_docstrings
(
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top."
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
class
TFCTRLModel
(
TFCTRLPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
**past**:
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import CTRLTokenizer, TFCTRLModel
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = TFCTRLModel.from_pretrained('ctrl')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
TFCTRLModel
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFCTRLMainLayer
(
config
,
name
=
'transformer'
)
def
call
(
self
,
inputs
,
**
kwargs
):
outputs
=
self
.
transformer
(
inputs
,
**
kwargs
)
return
outputs
class
TFCTRLLMHead
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
config
,
input_embeddings
,
**
kwargs
):
super
(
TFCTRLLMHead
,
self
).
__init__
(
**
kwargs
)
self
.
vocab_size
=
config
.
vocab_size
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self
.
input_embeddings
=
input_embeddings
def
build
(
self
,
input_shape
):
self
.
bias
=
self
.
add_weight
(
shape
=
(
self
.
vocab_size
,),
initializer
=
'zeros'
,
trainable
=
True
,
name
=
'bias'
)
super
(
TFCTRLLMHead
,
self
).
build
(
input_shape
)
def
call
(
self
,
hidden_states
):
hidden_states
=
self
.
input_embeddings
(
hidden_states
,
mode
=
"linear"
)
hidden_states
=
hidden_states
+
self
.
bias
return
hidden_states
@
add_start_docstrings
(
"""The CTRL Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """
,
CTRL_START_DOCSTRING
,
CTRL_INPUTS_DOCSTRING
)
class
TFCTRLLMHeadModel
(
TFCTRLPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**past**:
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import torch
from transformers import CTRLTokenizer, TFCTRLLMHeadModel
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
model = TFCTRLLMHeadModel.from_pretrained('ctrl')
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=input_ids)
loss, logits = outputs[:2]
"""
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
TFCTRLLMHeadModel
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
transformer
=
TFCTRLMainLayer
(
config
,
name
=
'transformer'
)
self
.
lm_head
=
TFCTRLLMHead
(
config
,
self
.
transformer
.
w
,
name
=
"lm_head"
)
def
call
(
self
,
inputs
,
**
kwargs
):
transformer_outputs
=
self
.
transformer
(
inputs
,
**
kwargs
)
hidden_states
=
transformer_outputs
[
0
]
lm_logits
=
self
.
lm_head
(
hidden_states
)
outputs
=
(
lm_logits
,)
+
transformer_outputs
[
1
:]
return
outputs
# lm_logits, presents, (all hidden_states), (attentions)
transformers/modeling_tf_distilbert.py
View file @
228cdd6a
...
...
@@ -31,7 +31,6 @@ import tensorflow as tf
from
.configuration_distilbert
import
DistilBertConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
TFSharedEmbeddings
,
shape_list
,
get_initializer
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -66,14 +65,6 @@ def gelu_new(x):
(
np
.
sqrt
(
2
/
np
.
pi
)
*
(
x
+
0.044715
*
tf
.
pow
(
x
,
3
)))))
return
x
*
cdf
def
load_distilbert_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
tf
.
constant
([[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]])
attns_list
=
tf
.
constant
([[
1
,
1
,
0
,
0
,
1
],
[
1
,
1
,
1
,
0
,
0
],
[
1
,
0
,
0
,
1
,
1
]])
tf_inputs
=
[
inputs_list
,
attns_list
]
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
class
TFEmbeddings
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
config
,
**
kwargs
):
super
(
TFEmbeddings
,
self
).
__init__
(
**
kwargs
)
...
...
@@ -226,8 +217,6 @@ class TFMultiHeadSelfAttention(tf.keras.layers.Layer):
dim_per_head
=
self
.
dim
//
self
.
n_heads
assert
2
<=
len
(
tf
.
shape
(
mask
))
<=
3
causal
=
(
len
(
tf
.
shape
(
mask
))
==
3
)
mask_reshape
=
[
bs
,
1
,
1
,
k_length
]
def
shape
(
x
):
...
...
@@ -456,7 +445,6 @@ class TFDistilBertPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
DistilBertConfig
pretrained_model_archive_map
=
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_distilbert_pt_weights_in_tf2
base_model_prefix
=
"distilbert"
...
...
transformers/modeling_tf_gpt2.py
View file @
228cdd6a
...
...
@@ -32,7 +32,6 @@ from .modeling_tf_utils import (TFPreTrainedModel, TFConv1D, TFSharedEmbeddings,
TFSequenceSummary
,
shape_list
,
get_initializer
)
from
.configuration_gpt2
import
GPT2Config
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -42,14 +41,6 @@ TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models
"distilgpt2"
:
"https://s3.amazonaws.com/models.huggingface.co/bert/distilgpt2-tf_model.h5"
,}
def
load_gpt2_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
tf_inputs
=
tf
.
constant
(
inputs_list
)
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
def
gelu
(
x
):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
...
...
@@ -350,7 +341,6 @@ class TFGPT2PreTrainedModel(TFPreTrainedModel):
"""
config_class
=
GPT2Config
pretrained_model_archive_map
=
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_gpt2_pt_weights_in_tf2
base_model_prefix
=
"transformer"
...
...
transformers/modeling_tf_openai.py
View file @
228cdd6a
...
...
@@ -32,21 +32,12 @@ from .modeling_tf_utils import (TFPreTrainedModel, TFConv1D, TFSharedEmbeddings,
TFSequenceSummary
,
shape_list
,
get_initializer
)
from
.configuration_openai
import
OpenAIGPTConfig
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
=
{
"openai-gpt"
:
"https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-tf_model.h5"
}
def
load_openai_gpt_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
tf_inputs
=
tf
.
constant
(
inputs_list
)
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
def
gelu
(
x
):
"""Gaussian Error Linear Unit.
This is a smoother version of the RELU.
...
...
@@ -335,7 +326,6 @@ class TFOpenAIGPTPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
OpenAIGPTConfig
pretrained_model_archive_map
=
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_openai_gpt_pt_weights_in_tf2
base_model_prefix
=
"transformer"
...
...
transformers/modeling_tf_pytorch_utils.py
View file @
228cdd6a
...
...
@@ -25,8 +25,6 @@ import numpy
logger
=
logging
.
getLogger
(
__name__
)
DUMMY_INPUTS
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
def
convert_tf_weight_name_to_pt_weight_name
(
tf_name
,
start_prefix_to_remove
=
''
):
""" Convert a TF 2.0 model variable name in a pytorch model weight name.
...
...
@@ -105,7 +103,7 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
raise
e
if
tf_inputs
is
None
:
tf_inputs
=
tf
.
constant
(
DUMMY_INPUTS
)
tf_inputs
=
tf
_model
.
dummy_inputs
if
tf_inputs
is
not
None
:
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
...
...
@@ -200,7 +198,7 @@ def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs
tf_model
=
tf_model_class
(
pt_model
.
config
)
if
tf_inputs
is
None
:
tf_inputs
=
tf
.
constant
(
DUMMY_INPUTS
)
tf_inputs
=
tf
_model
.
dummy_inputs
if
tf_inputs
is
not
None
:
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
...
...
transformers/modeling_tf_roberta.py
View file @
228cdd6a
...
...
@@ -26,7 +26,6 @@ import tensorflow as tf
from
.configuration_roberta
import
RobertaConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
get_initializer
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
from
.modeling_tf_bert
import
TFBertEmbeddings
,
TFBertMainLayer
,
gelu
,
gelu_new
...
...
@@ -36,16 +35,9 @@ TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
'roberta-base'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-tf_model.h5"
,
'roberta-large'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-tf_model.h5"
,
'roberta-large-mnli'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-tf_model.h5"
,
'distilroberta-base'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/distilroberta-base-tf_model.h5"
,
}
def
load_roberta_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
tf_inputs
=
tf
.
constant
(
inputs_list
)
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
class
TFRobertaEmbeddings
(
TFBertEmbeddings
):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
...
...
@@ -83,7 +75,7 @@ class TFRobertaMainLayer(TFBertMainLayer):
input_ids
=
inputs
if
tf
.
not_equal
(
tf
.
reduce_sum
(
input_ids
[:,
0
]),
0
):
logger
.
warn
in
g
(
"A sequence with no special tokens has been passed to the RoBERTa model. "
tf
.
pr
in
t
(
"A sequence with no special tokens has been passed to the RoBERTa model. "
"This model requires special tokens in order to work. "
"Please specify add_special_tokens=True in your encoding."
)
...
...
@@ -96,7 +88,6 @@ class TFRobertaPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
RobertaConfig
pretrained_model_archive_map
=
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_roberta_pt_weights_in_tf2
base_model_prefix
=
"roberta"
...
...
@@ -380,3 +371,54 @@ class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel):
outputs
=
(
logits
,)
+
outputs
[
2
:]
return
outputs
# logits, (hidden_states), (attentions)
@
add_start_docstrings
(
"""RoBERTa Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """
,
ROBERTA_START_DOCSTRING
,
ROBERTA_INPUTS_DOCSTRING
)
class
TFRobertaForTokenClassification
(
TFRobertaPreTrainedModel
):
r
"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
import tensorflow as tf
from transformers import RobertaTokenizer, TFRobertaForTokenClassification
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = TFRobertaForTokenClassification.from_pretrained('roberta-base')
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1
outputs = model(input_ids)
scores = outputs[0]
"""
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
TFRobertaForTokenClassification
,
self
).
__init__
(
config
,
*
inputs
,
**
kwargs
)
self
.
num_labels
=
config
.
num_labels
self
.
roberta
=
TFRobertaMainLayer
(
config
,
name
=
'roberta'
)
self
.
dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
hidden_dropout_prob
)
self
.
classifier
=
tf
.
keras
.
layers
.
Dense
(
config
.
num_labels
,
kernel_initializer
=
get_initializer
(
config
.
initializer_range
),
name
=
'classifier'
)
def
call
(
self
,
inputs
,
**
kwargs
):
outputs
=
self
.
roberta
(
inputs
,
**
kwargs
)
sequence_output
=
outputs
[
0
]
sequence_output
=
self
.
dropout
(
sequence_output
,
training
=
kwargs
.
get
(
'training'
,
False
))
logits
=
self
.
classifier
(
sequence_output
)
outputs
=
(
logits
,)
+
outputs
[
2
:]
# add hidden states and attention if they are here
return
outputs
# scores, (hidden_states), (attentions)
transformers/modeling_tf_transfo_xl.py
View file @
228cdd6a
...
...
@@ -33,7 +33,6 @@ from .configuration_transfo_xl import TransfoXLConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
TFConv1D
,
TFSequenceSummary
,
shape_list
,
get_initializer
from
.modeling_tf_transfo_xl_utilities
import
TFAdaptiveSoftmaxMask
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -41,14 +40,6 @@ TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
'transfo-xl-wt103'
:
"https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-tf_model.h5"
,
}
def
load_transfo_xl_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
tf_inputs
=
tf
.
constant
(
inputs_list
)
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
class
TFPositionalEmbedding
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
demb
,
**
kwargs
):
super
(
TFPositionalEmbedding
,
self
).
__init__
(
**
kwargs
)
...
...
@@ -577,7 +568,6 @@ class TFTransfoXLPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
TransfoXLConfig
pretrained_model_archive_map
=
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_transfo_xl_pt_weights_in_tf2
base_model_prefix
=
"transformer"
...
...
transformers/modeling_tf_utils.py
View file @
228cdd6a
...
...
@@ -25,9 +25,11 @@ import tensorflow as tf
from
.configuration_utils
import
PretrainedConfig
from
.file_utils
import
cached_path
,
WEIGHTS_NAME
,
TF_WEIGHTS_NAME
,
TF2_WEIGHTS_NAME
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
DUMMY_INPUTS
=
[[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]]
class
TFPreTrainedModel
(
tf
.
keras
.
Model
):
r
""" Base class for all TF models.
...
...
@@ -48,8 +50,8 @@ class TFPreTrainedModel(tf.keras.Model):
"""
config_class
=
None
pretrained_model_archive_map
=
{}
load_pt_weights
=
lambda
model
,
config
,
path
:
None
base_model_prefix
=
""
dummy_inputs
=
tf
.
constant
(
DUMMY_INPUTS
)
# dummy inputs to build the network
def
__init__
(
self
,
config
,
*
inputs
,
**
kwargs
):
super
(
TFPreTrainedModel
,
self
).
__init__
(
*
inputs
,
**
kwargs
)
...
...
@@ -262,17 +264,16 @@ class TFPreTrainedModel(tf.keras.Model):
if
from_pt
:
# Load from a PyTorch checkpoint
return
cls
.
load_p
t_weights
(
model
,
resolved_archive_file
)
return
load_p
ytorch_checkpoint_in_tf2_model
(
model
,
resolved_archive_file
)
inputs
=
tf
.
constant
([[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]])
ret
=
model
(
inputs
,
training
=
False
)
# build the network with dummy inputs
ret
=
model
(
model
.
dummy_inputs
,
training
=
False
)
# build the network with dummy inputs
assert
os
.
path
.
isfile
(
resolved_archive_file
),
"Error retrieving file {}"
.
format
(
resolved_archive_file
)
# 'by_name' allow us to do transfer learning by skipping/adding layers
# see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357
model
.
load_weights
(
resolved_archive_file
,
by_name
=
True
)
ret
=
model
(
inputs
,
training
=
False
)
# Make sure restore ops are run
ret
=
model
(
model
.
dummy_
inputs
,
training
=
False
)
# Make sure restore ops are run
return
model
...
...
@@ -393,26 +394,26 @@ class TFSequenceSummary(tf.keras.layers.Layer):
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
raise
NotImplementedError
self
.
summary
=
None
if
hasattr
(
config
,
'summary_use_proj'
)
and
config
.
summary_use_proj
:
self
.
has_
summary
=
hasattr
(
config
,
'summary_use_proj'
)
and
config
.
summary_use_proj
if
self
.
has_summary
:
if
hasattr
(
config
,
'summary_proj_to_labels'
)
and
config
.
summary_proj_to_labels
and
config
.
num_labels
>
0
:
num_classes
=
config
.
num_labels
else
:
num_classes
=
config
.
hidden_size
self
.
summary
=
tf
.
keras
.
layers
.
Dense
(
num_classes
,
kernel_initializer
=
get_initializer
(
initializer_range
),
name
=
'summary'
)
kernel_initializer
=
get_initializer
(
initializer_range
),
name
=
'summary'
)
self
.
activation
=
None
if
hasattr
(
config
,
'summary_activation'
)
and
config
.
summary
_activation
==
'tanh'
:
self
.
has_
activation
=
hasattr
(
config
,
'summary_activation'
)
and
config
.
summary_activation
==
'tanh'
if
self
.
has
_activation
:
self
.
activation
=
tf
.
keras
.
activations
.
tanh
self
.
first_dropout
=
None
if
hasattr
(
config
,
'summary_first_dropout'
)
and
config
.
summary
_first_dropout
>
0
:
self
.
has_
first_dropout
=
hasattr
(
config
,
'summary_first_dropout'
)
and
config
.
summary_first_dropout
>
0
if
self
.
has
_first_dropout
:
self
.
first_dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
summary_first_dropout
)
self
.
last_dropout
=
None
if
hasattr
(
config
,
'summary_last_dropout'
)
and
config
.
summary
_last_dropout
>
0
:
self
.
has_
last_dropout
=
hasattr
(
config
,
'summary_last_dropout'
)
and
config
.
summary_last_dropout
>
0
if
self
.
has
_last_dropout
:
self
.
last_dropout
=
tf
.
keras
.
layers
.
Dropout
(
config
.
summary_last_dropout
)
def
call
(
self
,
inputs
,
training
=
False
):
...
...
@@ -455,17 +456,17 @@ class TFSequenceSummary(tf.keras.layers.Layer):
elif
self
.
summary_type
==
'attn'
:
raise
NotImplementedError
if
training
and
self
.
first_dropout
is
not
None
:
output
=
self
.
first_dropout
(
output
)
if
self
.
has_
first_dropout
:
output
=
self
.
first_dropout
(
output
,
training
=
training
)
if
self
.
summary
is
not
None
:
if
self
.
has_
summary
:
output
=
self
.
summary
(
output
)
if
self
.
activation
is
not
None
:
if
self
.
has_
activation
:
output
=
self
.
activation
(
output
)
if
training
and
self
.
last_dropout
is
not
None
:
output
=
self
.
last_dropout
(
output
)
if
self
.
has_
last_dropout
:
output
=
self
.
last_dropout
(
output
,
training
=
training
)
return
output
...
...
transformers/modeling_tf_xlm.py
View file @
228cdd6a
...
...
@@ -25,9 +25,8 @@ import numpy as np
import
tensorflow
as
tf
from
.configuration_xlm
import
XLMConfig
from
.modeling_tf_utils
import
TFPreTrainedModel
,
TFSharedEmbeddings
,
TFSequenceSummary
,
shape_list
,
get_initializer
from
.modeling_tf_utils
import
TFPreTrainedModel
,
TFSharedEmbeddings
,
TFSequenceSummary
,
shape_list
,
get_initializer
,
DUMMY_INPUTS
from
.file_utils
import
add_start_docstrings
from
.modeling_tf_pytorch_utils
import
load_pytorch_checkpoint_in_tf2_model
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -45,19 +44,6 @@ TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
}
def
load_xlm_pt_weights_in_tf2
(
tf_model
,
pytorch_checkpoint_path
):
# build the network
inputs_list
=
tf
.
constant
([[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]])
attns_list
=
tf
.
constant
([[
1
,
1
,
0
,
0
,
1
],
[
1
,
1
,
1
,
0
,
0
],
[
1
,
0
,
0
,
1
,
1
]])
if
tf_model
.
config
.
use_lang_emb
and
tf_model
.
config
.
n_langs
>
1
:
langs_list
=
tf
.
constant
([[
1
,
1
,
0
,
0
,
1
],
[
1
,
1
,
1
,
0
,
0
],
[
1
,
0
,
0
,
1
,
1
]])
else
:
langs_list
=
None
tf_inputs
=
[
inputs_list
,
attns_list
,
langs_list
]
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
return
load_pytorch_checkpoint_in_tf2_model
(
tf_model
,
pytorch_checkpoint_path
,
tf_inputs
=
tf_inputs
)
def
create_sinusoidal_embeddings
(
n_pos
,
dim
,
out
):
position_enc
=
np
.
array
([
[
pos
/
np
.
power
(
10000
,
2
*
(
j
//
2
)
/
dim
)
for
j
in
range
(
dim
)]
...
...
@@ -441,9 +427,19 @@ class TFXLMPreTrainedModel(TFPreTrainedModel):
"""
config_class
=
XLMConfig
pretrained_model_archive_map
=
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
load_pt_weights
=
load_xlm_pt_weights_in_tf2
base_model_prefix
=
"transformer"
@
property
def
dummy_inputs
(
self
):
# Sometimes XLM has language embeddings so don't forget to build them as well if needed
inputs_list
=
tf
.
constant
([[
7
,
6
,
0
,
0
,
1
],
[
1
,
2
,
3
,
0
,
0
],
[
0
,
0
,
0
,
4
,
5
]])
attns_list
=
tf
.
constant
([[
1
,
1
,
0
,
0
,
1
],
[
1
,
1
,
1
,
0
,
0
],
[
1
,
0
,
0
,
1
,
1
]])
if
self
.
config
.
use_lang_emb
and
self
.
config
.
n_langs
>
1
:
langs_list
=
tf
.
constant
([[
1
,
1
,
0
,
0
,
1
],
[
1
,
1
,
1
,
0
,
0
],
[
1
,
0
,
0
,
1
,
1
]])
else
:
langs_list
=
None
return
[
inputs_list
,
attns_list
,
langs_list
]
XLM_START_DOCSTRING
=
r
""" The XLM model was proposed in
`Cross-lingual Language Model Pretraining`_
...
...
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment