Unverified Commit 22454ae4 authored by Li-Huai (Allan) Lin's avatar Li-Huai (Allan) Lin Committed by GitHub
Browse files

Add REALM (#13292)



* REALM initial commit

* Retriever OK (Update new_gelu).

* Encoder prediction score OK

* Encoder pretrained model OK

* Update retriever comments

* Update docs, tests, and imports

* Prune unused models

* Make embedder as a module `RealmEmbedder`

* Add RealmRetrieverOutput

* Update tokenization

* Pass all tests in test_modeling_realm.py

* Prune RealmModel

* Update docs

* Add training test.

* Remove completed TODO

* Style & Quality

* Prune `RealmModel`

* Fixup

* Changes:
1. Remove RealmTokenizerFast
2. Update docstrings
3. Add a method to RealmTokenizer to handle candidates tokenization.

* Fix up

* Style

* Add tokenization tests

* Update `from_pretrained` tests

* Apply suggestions

* Style & Quality

* Copy BERT model

* Fix comment to avoid docstring copying

* Make RealmBertModel private

* Fix bug

* Style

* Basic QA

* Save

* Complete reader logits

* Add searcher

* Complete searcher & reader

* Move block records init to constructor

* Fix training bug

* Add some outputs to RealmReader

* Add finetuned checkpoint variable names parsing

* Fix bug

* Update REALM config

* Add RealmForOpenQA

* Update convert_tfrecord logits

* Fix bugs

* Complete imports

* Update docs

* Update naming

* Add brute-force searcher

* Pass realm model tests

* Style

* Exclude RealmReader from common tests

* Fix

* Fix

* convert docs

* up

* up

* more make style

* up

* upload

* up

* Fix

* Update src/transformers/__init__.py

* adapt testing

* change modeling code

* fix test

* up

* up

* up

* correct more

* make retriever work

* update

* make style

* finish main structure

* Resolve merge conflict

* Make everything work

* Style

* Fixup

* Fixup

* Update training test

* fix retriever

* remove hardcoded path

* Fix

* Fix modeling test

* Update model links

* Initial retrieval test

* Fix modeling test

* Complete retrieval tests

* Fix

* style

* Fix tests

* Fix docstring example

* Minor fix of retrieval test

* Update license headers and docs

* Apply suggestions from code review

* Style

* Apply suggestions from code review

* Add an example to RealmEmbedder

* Fix
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
parent b25067d8
...@@ -291,6 +291,7 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. ...@@ -291,6 +291,7 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/master/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
......
...@@ -270,6 +270,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는 ...@@ -270,6 +270,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/master/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
......
...@@ -294,6 +294,7 @@ conda install -c huggingface transformers ...@@ -294,6 +294,7 @@ conda install -c huggingface transformers
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (来自 VinAI Research) 伴随论文 [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) 由 Dat Quoc Nguyen and Anh Tuan Nguyen 发布。
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (来自 Microsoft Research) 伴随论文 [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) 由 Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou 发布。
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (来自 NVIDIA) 伴随论文 [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) 由 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius 发布。
1. **[REALM](https://huggingface.co/transformers/master/model_doc/realm.html)** (来自 Google Research) 伴随论文 [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) 由 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang 发布。
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (来自 Google Research) 伴随论文 [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) 由 Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya 发布。
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (来自 Google Research) 伴随论文 [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) 由 Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder 发布。
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (来自 Facebook), 伴随论文 [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) 由 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov 发布。
......
...@@ -306,6 +306,7 @@ conda install -c huggingface transformers ...@@ -306,6 +306,7 @@ conda install -c huggingface transformers
1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PhoBERT](https://huggingface.co/docs/transformers/model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[ProphetNet](https://huggingface.co/docs/transformers/model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[QDQBert](https://huggingface.co/docs/transformers/model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/master/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[Reformer](https://huggingface.co/docs/transformers/model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[RemBERT](https://huggingface.co/docs/transformers/model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa](https://huggingface.co/docs/transformers/model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
......
...@@ -240,6 +240,8 @@ ...@@ -240,6 +240,8 @@
title: QDQBert title: QDQBert
- local: model_doc/rag - local: model_doc/rag
title: RAG title: RAG
- local: model_doc/realm
title: REALM
- local: model_doc/reformer - local: model_doc/reformer
title: Reformer title: Reformer
- local: model_doc/rembert - local: model_doc/rembert
......
...@@ -151,6 +151,7 @@ conversion utilities for the following models. ...@@ -151,6 +151,7 @@ conversion utilities for the following models.
1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen. 1. **[PhoBERT](model_doc/phobert)** (from VinAI Research) released with the paper [PhoBERT: Pre-trained language models for Vietnamese](https://www.aclweb.org/anthology/2020.findings-emnlp.92/) by Dat Quoc Nguyen and Anh Tuan Nguyen.
1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. 1. **[ProphetNet](model_doc/prophetnet)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. 1. **[QDQBert](model_doc/qdqbert)** (from NVIDIA) released with the paper [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
1. **[REALM](https://huggingface.co/transformers/master/model_doc/realm.html)** (from Google Research) released with the paper [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909) by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. 1. **[Reformer](model_doc/reformer)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder. 1. **[RemBERT](model_doc/rembert)** (from Google Research) released with the paper [Rethinking embedding coupling in pre-trained language models](https://arxiv.org/pdf/2010.12821.pdf) by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. 1. **[RoBERTa](model_doc/roberta)** (from Facebook), released together with the paper a [Robustly Optimized BERT Pretraining Approach](https://arxiv.org/abs/1907.11692) by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
...@@ -244,6 +245,7 @@ Flax), PyTorch, and/or TensorFlow. ...@@ -244,6 +245,7 @@ Flax), PyTorch, and/or TensorFlow.
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ | | ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
| QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ | | QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ | | RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
| Realm | ✅ | ❌ | ✅ | ❌ | ❌ |
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ | | Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ | | RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
......
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# REALM
## Overview
The REALM model was proposed in `REALM: Retrieval-Augmented Language Model Pre-Training
<https://arxiv.org/abs/2002.08909>`__ by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang. It's a
retrieval-augmented language model that firstly retrieves documents from a textual knowledge corpus and then
utilizes retrieved documents to process question answering tasks.
The abstract from the paper is the following:
*Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks
such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network,
requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we
augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend
over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the
first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language
modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We
demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the
challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both
explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous
methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as
interpretability and modularity.*
This model was contributed by `qqaatw <https://huggingface.co/qqaatw>`__. The original code can be found `here
<https://github.com/google-research/language/tree/master/language/realm>`__.
## RealmConfig
[[autodoc]] RealmConfig
## RealmTokenizer
[[autodoc]] RealmTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
- batch_encode_candidates
## RealmRetriever
[[autodoc]] RealmRetriever
## RealmEmbedder
[[autodoc]] RealmEmbedder
- forward
## RealmScorer
[[autodoc]] RealmScorer
- forward
## RealmKnowledgeAugEncoder
[[autodoc]] RealmKnowledgeAugEncoder
- forward
## RealmReader
[[autodoc]] RealmReader
- forward
## RealmForOpenQA
[[autodoc]] RealmForOpenQA
- forward
\ No newline at end of file
...@@ -265,6 +265,7 @@ _import_structure = { ...@@ -265,6 +265,7 @@ _import_structure = {
"models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"], "models.prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig", "ProphetNetTokenizer"],
"models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"], "models.qdqbert": ["QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "QDQBertConfig"],
"models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"], "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"],
"models.realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig", "RealmTokenizer"],
"models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"], "models.reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"],
"models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"], "models.rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig"],
"models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"], "models.retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig", "RetriBertTokenizer"],
...@@ -1199,6 +1200,19 @@ if is_torch_available(): ...@@ -1199,6 +1200,19 @@ if is_torch_available():
_import_structure["models.rag"].extend( _import_structure["models.rag"].extend(
["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"] ["RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration"]
) )
_import_structure["models.realm"].extend(
[
"REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RealmEmbedder",
"RealmForOpenQA",
"RealmKnowledgeAugEncoder",
"RealmPreTrainedModel",
"RealmReader",
"RealmRetriever",
"RealmScorer",
"load_tf_weights_in_realm",
]
)
_import_structure["models.reformer"].extend( _import_structure["models.reformer"].extend(
[ [
"REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
...@@ -2353,6 +2367,7 @@ if TYPE_CHECKING: ...@@ -2353,6 +2367,7 @@ if TYPE_CHECKING:
from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer from .models.prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig, ProphetNetTokenizer
from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig from .models.qdqbert import QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, QDQBertConfig
from .models.rag import RagConfig, RagRetriever, RagTokenizer from .models.rag import RagConfig, RagRetriever, RagTokenizer
from .models.realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig, RealmTokenizer
from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig from .models.reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig from .models.rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig
from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer from .models.retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig, RetriBertTokenizer
...@@ -3128,6 +3143,17 @@ if TYPE_CHECKING: ...@@ -3128,6 +3143,17 @@ if TYPE_CHECKING:
ProphetNetPreTrainedModel, ProphetNetPreTrainedModel,
) )
from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration from .models.rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
from .models.realm import (
REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmPreTrainedModel,
RealmReader,
RealmRetriever,
RealmScorer,
load_tf_weights_in_realm,
)
from .models.reformer import ( from .models.reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention, ReformerAttention,
......
...@@ -84,6 +84,7 @@ from . import ( ...@@ -84,6 +84,7 @@ from . import (
prophetnet, prophetnet,
qdqbert, qdqbert,
rag, rag,
realm,
reformer, reformer,
rembert, rembert,
retribert, retribert,
......
...@@ -30,6 +30,7 @@ logger = logging.get_logger(__name__) ...@@ -30,6 +30,7 @@ logger = logging.get_logger(__name__)
CONFIG_MAPPING_NAMES = OrderedDict( CONFIG_MAPPING_NAMES = OrderedDict(
[ [
# Add configs here # Add configs here
("realm", "RealmConfig"),
("nystromformer", "NystromformerConfig"), ("nystromformer", "NystromformerConfig"),
("imagegpt", "ImageGPTConfig"), ("imagegpt", "ImageGPTConfig"),
("qdqbert", "QDQBertConfig"), ("qdqbert", "QDQBertConfig"),
...@@ -117,6 +118,7 @@ CONFIG_MAPPING_NAMES = OrderedDict( ...@@ -117,6 +118,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
[ [
# Add archive maps here # Add archive maps here
("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
...@@ -192,6 +194,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( ...@@ -192,6 +194,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
MODEL_NAMES_MAPPING = OrderedDict( MODEL_NAMES_MAPPING = OrderedDict(
[ [
# Add full (and cased) model names here # Add full (and cased) model names here
("realm", "Realm"),
("nystromformer", "Nystromformer"), ("nystromformer", "Nystromformer"),
("imagegpt", "ImageGPT"), ("imagegpt", "ImageGPT"),
("qdqbert", "QDQBert"), ("qdqbert", "QDQBert"),
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_realm": ["REALM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RealmConfig"],
"tokenization_realm": ["RealmTokenizer"],
}
if is_torch_available():
_import_structure["modeling_realm"] = [
"REALM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RealmEmbedder",
"RealmForOpenQA",
"RealmKnowledgeAugEncoder",
"RealmPreTrainedModel",
"RealmReader",
"RealmScorer",
"load_tf_weights_in_realm",
]
_import_structure["retrieval_realm"] = ["RealmRetriever"]
if TYPE_CHECKING:
from .configuration_realm import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP, RealmConfig
from .tokenization_realm import RealmTokenizer
if is_torch_available():
from .modeling_realm import (
REALM_PRETRAINED_MODEL_ARCHIVE_LIST,
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmPreTrainedModel,
RealmReader,
RealmScorer,
load_tf_weights_in_realm,
)
from .retrieval_realm import RealmRetriever
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" REALM model configuration."""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
REALM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"realm-cc-news-pretrained-embedder": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-embedder/resolve/main/config.json",
"realm-cc-news-pretrained-encoder": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-encoder/resolve/main/config.json",
"realm-cc-news-pretrained-scorer": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-scorer/resolve/main/config.json",
"realm-cc-news-pretrained-openqa": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-openqa/aresolve/main/config.json",
"realm-orqa-nq-openqa": "https://huggingface.co/qqaatw/realm-orqa-nq-openqa/resolve/main/config.json",
"realm-orqa-nq-reader": "https://huggingface.co/qqaatw/realm-orqa-nq-reader/resolve/main/config.json",
"realm-orqa-wq-openqa": "https://huggingface.co/qqaatw/realm-orqa-wq-openqa/resolve/main/config.json",
"realm-orqa-wq-reader": "https://huggingface.co/qqaatw/realm-orqa-wq-reader/resolve/main/config.json",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class RealmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of
1. [`RealmEmbedder`]
2. [`RealmScorer`]
3. [`RealmKnowledgeAugEncoder`]
4. [`RealmRetriever`]
5. [`RealmReader`]
6. [`RealmForOpenQA`]
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[realm-cc-news-pretrained](https://huggingface.co/qqaatw/realm-cc-news-pretrained-embedder) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
[`RealmReader`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
retriever_proj_size (`int`, *optional*, defaults to 128):
Dimension of the retriever(embedder) projection.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_candidates (`int`, *optional*, defaults to 8):
Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
[`RealmKnowledgeAugEncoder`], or [`RealmReader`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
span_hidden_size (`int`, *optional*, defaults to 256):
Dimension of the reader's spans.
max_span_width (`int`, *optional*, defaults to 10):
Max span width of the reader.
reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the reader's layer normalization layers.
reader_beam_size (`int`, *optional*, defaults to 5):
Beam size of the reader.
reader_seq_len (`int`, *optional*, defaults to 288+32):
Maximum sequence length of the reader.
num_block_records (`int`, *optional*, defaults to 13353718):
Number of block records.
searcher_beam_size (`int`, *optional*, defaults to 5000):
Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
*reader_beam_size*.
searcher_seq_len (`int`, *optional*, defaults to 64):
Maximum sequence length of the searcher.
Example:
```python
>>> from transformers import RealmEmbedder, RealmConfig
>>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
>>> configuration = RealmConfig()
>>> # Initializing a model from the qqaatw/realm-cc-news-pretrained-embedder style configuration
>>> model = RealmEmbedder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "realm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
retriever_proj_size=128,
num_hidden_layers=12,
num_attention_heads=12,
num_candidates=8,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=256,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=5,
reader_seq_len=320, # 288 + 32
num_block_records=13353718,
searcher_beam_size=5000,
searcher_seq_len=64,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
# Common config
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.retriever_proj_size = retriever_proj_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_candidates = num_candidates
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Retrieval config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size
self.searcher_seq_len = searcher_seq_len
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch REALM model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from packaging import version
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput,
ModelOutput,
)
from ...modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_realm import RealmConfig
logger = logging.get_logger(__name__)
_EMBEDDER_CHECKPOINT_FOR_DOC = "qqaatw/realm-cc-news-pretrained-embedder"
_ENCODER_CHECKPOINT_FOR_DOC = "qqaatw/realm-cc-news-pretrained-encoder"
_SCORER_CHECKPOINT_FOR_DOC = "qqaatw/realm-cc-news-pretrained-scorer"
_CONFIG_FOR_DOC = "RealmConfig"
_TOKENIZER_FOR_DOC = "RealmTokenizer"
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"qqaatw/realm-cc-news-pretrained-embedder",
"qqaatw/realm-cc-news-pretrained-encoder",
"qqaatw/realm-cc-news-pretrained-scorer",
"qqaatw/realm-cc-news-pretrained-openqa",
"qqaatw/realm-orqa-nq-openqa",
"qqaatw/realm-orqa-nq-reader",
"qqaatw/realm-orqa-wq-openqa",
"qqaatw/realm-orqa-wq-reader",
# See all REALM models at https://huggingface.co/models?filter=realm
]
def load_tf_weights_in_realm(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
if isinstance(model, RealmReader) and "reader" not in name:
logger.info(f"Skipping {name} as it is not {model.__class__.__name__}'s parameter")
continue
# For pretrained openqa reader
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmForOpenQA):
name = name.replace("bert/", "reader/realm/")
name = name.replace("cls/", "reader/cls/")
# For pretrained encoder
if (name.startswith("bert") or name.startswith("cls")) and isinstance(model, RealmKnowledgeAugEncoder):
name = name.replace("bert/", "realm/")
# For finetuned reader
if name.startswith("reader"):
reader_prefix = "" if isinstance(model, RealmReader) else "reader/"
name = name.replace("reader/module/bert/", f"{reader_prefix}realm/")
name = name.replace("reader/module/cls/", f"{reader_prefix}cls/")
name = name.replace("reader/dense/", f"{reader_prefix}qa_outputs/dense_intermediate/")
name = name.replace("reader/dense_1/", f"{reader_prefix}qa_outputs/dense_output/")
name = name.replace("reader/layer_normalization", f"{reader_prefix}qa_outputs/layer_normalization")
# For embedder and scorer
if name.startswith("module/module/module/"): # finetuned
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.replace("module/module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
name = name.replace("module/module/module/bert/", f"{embedder_prefix}realm/")
name = name.replace("module/module/module/cls/predictions/", f"{embedder_prefix}cls/predictions/")
elif name.startswith("module/module/"): # pretrained
embedder_prefix = "" if isinstance(model, RealmEmbedder) else "embedder/"
name = name.replace("module/module/LayerNorm/", f"{embedder_prefix}cls/LayerNorm/")
name = name.replace("module/module/dense/", f"{embedder_prefix}cls/dense/")
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->Realm
class RealmEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
persistent=False,
)
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Realm
class RealmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RealmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Realm
class RealmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Realm
class RealmAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = RealmSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = RealmSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Realm
class RealmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Realm
class RealmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Realm
class RealmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = RealmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = RealmAttention(config, position_embedding_type="absolute")
self.intermediate = RealmIntermediate(config)
self.output = RealmOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Realm
class RealmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([RealmLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Realm
class RealmPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
@dataclass
class RealmEmbedderOutput(ModelOutput):
"""
Outputs of [`RealmEmbedder`] models.
Args:
projected_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
Projected score.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
projected_score: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class RealmScorerOutput(ModelOutput):
"""
Outputs of [`RealmScorer`] models.
Args:
relevance_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates)`):
The relevance score of document candidates (before softmax).
query_score (`torch.FloatTensor` of shape `(batch_size, config.retriever_proj_size)`):
Query score derived from the query embedder.
candidate_score (`torch.FloatTensor` of shape `(batch_size, config.num_candidates, config.retriever_proj_size)`):
Candidate score derived from the embedder.
"""
relevance_score: torch.FloatTensor = None
query_score: torch.FloatTensor = None
candidate_score: torch.FloatTensor = None
@dataclass
class RealmReaderOutput(ModelOutput):
"""
Outputs of [`RealmReader`] models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Total loss.
retriever_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Retriever loss.
reader_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `start_positions`, `end_positions`, `has_answers` are provided):
Reader loss.
retriever_correct (`torch.BoolTensor` of shape `(config.searcher_beam_size,)`, *optional*):
Whether or not an evidence block contains answer.
reader_correct (`torch.BoolTensor` of shape `(config.reader_beam_size, num_candidates)`, *optional*):
Whether or not a span candidate contains answer.
block_idx (`torch.LongTensor` of shape `()`):
The index of the retrieved evidence block in which the predicted answer is most likely.
candidate (`torch.LongTensor` of shape `()`):
The index of the retrieved span candidates in which the predicted answer is most likely.
start_pos (`torch.IntTensor` of shape `()`):
Predicted answer starting position in *RealmReader*'s inputs.
end_pos: (`torch.IntTensor` of shape `()`):
Predicted answer ending position in *RealmReader*'s inputs.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: torch.FloatTensor = None
retriever_loss: torch.FloatTensor = None
reader_loss: torch.FloatTensor = None
retriever_correct: torch.BoolTensor = None
reader_correct: torch.BoolTensor = None
block_idx: torch.LongTensor = None
candidate: torch.LongTensor = None
start_pos: torch.int32 = None
end_pos: torch.int32 = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class RealmForOpenQAOutput(ModelOutput):
"""
Outputs of [`RealmForOpenQA`] models.
Args:
reader_output (`dict`):
Reader output.
predicted_answer_ids (`torch.LongTensor` of shape `(answer_sequence_length)`):
Predicted answer ids.
"""
reader_output: dict = None
predicted_answer_ids: torch.LongTensor = None
class RealmPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class RealmLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = RealmPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class RealmOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = RealmLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class RealmScorerProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = RealmLMPredictionHead(config)
self.dense = nn.Linear(config.hidden_size, config.retriever_proj_size)
self.LayerNorm = nn.LayerNorm(config.retriever_proj_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class RealmReaderProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dense_intermediate = nn.Linear(config.hidden_size, config.span_hidden_size * 2)
self.dense_output = nn.Linear(config.span_hidden_size, 1)
self.layer_normalization = nn.LayerNorm(config.span_hidden_size, eps=config.reader_layer_norm_eps)
self.relu = nn.ReLU()
def forward(self, hidden_states, token_type_ids):
def span_candidates(masks):
"""
Generate span candidates.
Args:
masks: <int32> [num_retrievals, max_sequence_len]
Returns:
starts: <int32> [num_spans] ends: <int32> [num_spans] span_masks: <int32> [num_retrievals, num_spans]
whether spans locate in evidence block.
"""
_, max_sequence_len = masks.shape
def _spans_given_width(width):
current_starts = torch.arange(max_sequence_len - width + 1, device=masks.device)
current_ends = torch.arange(width - 1, max_sequence_len, device=masks.device)
return current_starts, current_ends
starts, ends = zip(*(_spans_given_width(w + 1) for w in range(self.config.max_span_width)))
# [num_spans]
starts = torch.cat(starts, 0)
ends = torch.cat(ends, 0)
# [num_retrievals, num_spans]
start_masks = torch.index_select(masks, dim=-1, index=starts)
end_masks = torch.index_select(masks, dim=-1, index=ends)
span_masks = start_masks * end_masks
return starts, ends, span_masks
def mask_to_score(mask):
return (1.0 - mask.type(torch.float32)) * -10000.0
# [reader_beam_size, max_sequence_len, span_hidden_size * 2]
hidden_states = self.dense_intermediate(hidden_states)
# [reader_beam_size, max_sequence_len, span_hidden_size]
start_projection, end_projection = hidden_states.chunk(2, dim=-1)
block_mask = token_type_ids.detach().clone()
block_mask[:, -1] = 0
candidate_starts, candidate_ends, candidate_mask = span_candidates(block_mask)
candidate_start_projections = torch.index_select(start_projection, dim=1, index=candidate_starts)
candidate_end_projections = torch.index_select(end_projection, dim=1, index=candidate_ends)
candidate_hidden = candidate_start_projections + candidate_end_projections
# [reader_beam_size, num_candidates, span_hidden_size]
candidate_hidden = self.relu(candidate_hidden)
# [reader_beam_size, num_candidates, span_hidden_size]
candidate_hidden = self.layer_normalization(candidate_hidden)
# [reader_beam_size, num_candidates]
reader_logits = self.dense_output(candidate_hidden).squeeze(-1)
# [reader_beam_size, num_candidates]
reader_logits += mask_to_score(candidate_mask)
return reader_logits, candidate_starts, candidate_ends
REALM_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RealmConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
REALM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`RealmTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
class RealmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = RealmConfig
load_tf_weights = load_tf_weights_in_realm
base_model_prefix = "realm"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _flatten_inputs(self, *inputs):
"""Flatten inputs' shape to (-1, input_shape[-1])"""
flattened_inputs = []
for tensor in inputs:
if tensor is None:
flattened_inputs.append(None)
else:
input_shape = tensor.shape
if len(input_shape) > 2:
tensor = tensor.view((-1, input_shape[-1]))
flattened_inputs.append(tensor)
return flattened_inputs
class RealmBertModel(RealmPreTrainedModel):
"""
Same as the original BertModel but remove docstrings.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = RealmEmbeddings(config)
self.encoder = RealmEncoder(config)
self.pooler = RealmPooler(config) if add_pooling_layer else None
# Weights initialization is mostly managed by other Realm models,
# but we also have them initialized here to keep a consistency.
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"The embedder of REALM outputting projected score that will be used to calculate relevance score.",
REALM_START_DOCSTRING,
)
class RealmEmbedder(RealmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.realm = RealmBertModel(self.config)
self.cls = RealmScorerProjection(self.config)
self.post_init()
def get_input_embeddings(self):
return self.realm.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.realm.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=RealmEmbedderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
Example:
```python
>>> from transformers import RealmTokenizer, RealmEmbedder
>>> import torch
>>> tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-cc-news-pretrained-embedder")
>>> model = RealmEmbedder.from_pretrained("qqaatw/realm-cc-news-pretrained-embedder")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> projected_score = outputs.projected_score
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
realm_outputs = self.realm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size, hidden_size]
pooler_output = realm_outputs[1]
# [batch_size, retriever_proj_size]
projected_score = self.cls(pooler_output)
if not return_dict:
return (projected_score,) + realm_outputs[2:4]
else:
return RealmEmbedderOutput(
projected_score=projected_score,
hidden_states=realm_outputs.hidden_states,
attentions=realm_outputs.attentions,
)
@add_start_docstrings(
"The scorer of REALM outputting relevance scores representing the score of document candidates (before softmax).",
REALM_START_DOCSTRING,
)
class RealmScorer(RealmPreTrainedModel):
r"""
Args:
query_embedder ([`RealmEmbedder`]):
Embedder for input sequences. If not specified, it will use the same embedder as candidate sequences.
"""
def __init__(self, config, query_embedder=None):
super().__init__(config)
self.embedder = RealmEmbedder(self.config)
self.query_embedder = query_embedder if query_embedder is not None else self.embedder
self.post_init()
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=RealmScorerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
candidate_input_ids=None,
candidate_attention_mask=None,
candidate_token_type_ids=None,
candidate_inputs_embeds=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
candidate_input_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`):
Indices of candidate input sequence tokens in the vocabulary.
Indices can be obtained using [`RealmTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
candidate_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
candidate_token_type_ids (`torch.LongTensor` of shape `(batch_size, num_candidates, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
candidate_inputs_embeds (`torch.FloatTensor` of shape `(batch_size * num_candidates, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `candidate_input_ids` you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert *candidate_input_ids* indices
into associated vectors than the model's internal embedding lookup matrix.
Returns:
Example:
```python
>>> import torch
>>> from transformers import RealmTokenizer, RealmScorer
>>> tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-cc-news-pretrained-scorer")
>>> model = RealmScorer.from_pretrained("qqaatw/realm-cc-news-pretrained-scorer", num_candidates=2)
>>> # batch_size = 2, num_candidates = 2
>>> input_texts = ["How are you?", "What is the item in the picture?"]
>>> candidates_texts = [["Hello world!", "Nice to meet you!"], ["A cute cat.", "An adorable dog."]]
>>> inputs = tokenizer(input_texts, return_tensors="pt")
>>> candidates_inputs = tokenizer.batch_encode_candidates(candidates_texts, max_length=10, return_tensors="pt")
>>> outputs = model(
... **inputs,
... candidate_input_ids=candidates_inputs.input_ids,
... candidate_attention_mask=candidates_inputs.attention_mask,
... candidate_token_type_ids=candidates_inputs.token_type_ids,
... )
>>> relevance_score = outputs.relevance_score
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or input_embeds.")
if candidate_input_ids is None and candidate_inputs_embeds is None:
raise ValueError("You have to specify either candidate_input_ids or candidate_inputs_embeds.")
query_outputs = self.query_embedder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size * num_candidates, candidate_seq_len]
(flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
candidate_input_ids, candidate_attention_mask, candidate_token_type_ids
)
candidate_outputs = self.embedder(
flattened_input_ids,
attention_mask=flattened_attention_mask,
token_type_ids=flattened_token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=candidate_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size, retriever_proj_size]
query_score = query_outputs[0]
# [batch_size * num_candidates, retriever_proj_size]
candidate_score = candidate_outputs[0]
# [batch_size, num_candidates, retriever_proj_size]
candidate_score = candidate_score.view(-1, self.config.num_candidates, self.config.retriever_proj_size)
# [batch_size, num_candidates]
relevance_score = torch.einsum("BD,BND->BN", query_score, candidate_score)
if not return_dict:
return relevance_score, query_score, candidate_score
return RealmScorerOutput(
relevance_score=relevance_score, query_score=query_score, candidate_score=candidate_score
)
@add_start_docstrings(
"The knowledge-augmented encoder of REALM outputting masked language model logits and marginal log-likelihood loss.",
REALM_START_DOCSTRING,
)
class RealmKnowledgeAugEncoder(RealmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.realm = RealmBertModel(self.config)
self.cls = RealmOnlyMLMHead(self.config)
self.post_init()
def get_input_embeddings(self):
return self.realm.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.realm.embeddings.word_embeddings = value
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(
REALM_INPUTS_DOCSTRING.format("batch_size, num_candidates, sequence_length")
)
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
relevance_score=None,
labels=None,
mlm_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
relevance_score (`torch.FloatTensor` of shape `(batch_size, num_candidates)`, *optional*):
Relevance score derived from RealmScorer, must be specified if you want to compute the masked language
modeling loss.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
mlm_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid calculating joint loss on certain positions. If not specified, the loss will not be masked.
Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
Example:
```python
>>> import torch
>>> from transformers import RealmTokenizer, RealmKnowledgeAugEncoder
>>> tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-cc-news-pretrained-encoder")
>>> model = RealmKnowledgeAugEncoder.from_pretrained(
... "qqaatw/realm-cc-news-pretrained-encoder", num_candidates=2
... )
>>> # batch_size = 2, num_candidates = 2
>>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
>>> inputs = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
(flattened_input_ids, flattened_attention_mask, flattened_token_type_ids) = self._flatten_inputs(
input_ids, attention_mask, token_type_ids
)
joint_outputs = self.realm(
flattened_input_ids,
attention_mask=flattened_attention_mask,
token_type_ids=flattened_token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [batch_size * num_candidates, joint_seq_len, hidden_size]
joint_output = joint_outputs[0]
# [batch_size * num_candidates, joint_seq_len, vocab_size]
prediction_scores = self.cls(joint_output)
# [batch_size, num_candidates]
candidate_score = relevance_score
masked_lm_loss = None
if labels is not None:
if candidate_score is None:
raise ValueError(
"You have to specify `relevance_score` when `labels` is specified in order to compute loss."
)
batch_size, seq_length = labels.size()
if mlm_mask is None:
mlm_mask = torch.ones_like(labels, dtype=torch.float32)
else:
mlm_mask = mlm_mask.type(torch.float32)
# Compute marginal log-likelihood
loss_fct = CrossEntropyLoss(reduction="none") # -100 index = padding token
# [batch_size * num_candidates * joint_seq_len, vocab_size]
mlm_logits = prediction_scores.view(-1, self.config.vocab_size)
# [batch_size * num_candidates * joint_seq_len]
mlm_targets = labels.tile(1, self.config.num_candidates).view(-1)
# [batch_size, num_candidates, joint_seq_len]
masked_lm_log_prob = -loss_fct(mlm_logits, mlm_targets).view(
batch_size, self.config.num_candidates, seq_length
)
# [batch_size, num_candidates, 1]
candidate_log_prob = candidate_score.log_softmax(-1).unsqueeze(-1)
# [batch_size, num_candidates, joint_seq_len]
joint_gold_log_prob = candidate_log_prob + masked_lm_log_prob
# [batch_size, joint_seq_len]
marginal_gold_log_probs = joint_gold_log_prob.logsumexp(1)
# []
masked_lm_loss = -torch.nansum(torch.sum(marginal_gold_log_probs * mlm_mask) / torch.sum(mlm_mask))
if not return_dict:
output = (prediction_scores,) + joint_outputs[2:4]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=joint_outputs.hidden_states,
attentions=joint_outputs.attentions,
)
@add_start_docstrings("The reader of REALM.", REALM_START_DOCSTRING)
class RealmReader(RealmPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler", "cls"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.realm = RealmBertModel(config)
self.cls = RealmOnlyMLMHead(config)
self.qa_outputs = RealmReaderProjection(config)
self.post_init()
@add_start_docstrings_to_model_forward(REALM_INPUTS_DOCSTRING.format("reader_beam_size, sequence_length"))
@replace_return_docstrings(output_type=RealmReaderOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
relevance_score=None,
start_positions=None,
end_positions=None,
has_answers=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
relevance_score (`torch.FloatTensor` of shape `(searcher_beam_size,)`, *optional*):
Relevance score, which must be specified if you want to compute the marginal log loss.
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
has_answers (`torch.BoolTensor` of shape `(searcher_beam_size,)`, *optional*):
Whether or not the evidence block has answer(s).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if relevance_score is None:
raise ValueError("You have to specify `relevance_score` to calculate logits and loss.")
if token_type_ids is None:
raise ValueError("You have to specify `token_type_ids` to separate question block and evidence block.")
if token_type_ids.size(1) < self.config.max_span_width:
raise ValueError("The input sequence length must be greater than or equal to config.max_span_width.")
outputs = self.realm(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# [reader_beam_size, joint_seq_len, hidden_size]
sequence_output = outputs[0]
# [reader_beam_size, num_candidates], [num_candidates], [num_candidates]
reader_logits, candidate_starts, candidate_ends = self.qa_outputs(sequence_output, token_type_ids)
# [searcher_beam_size, 1]
retriever_logits = torch.unsqueeze(relevance_score[0 : self.config.reader_beam_size], -1)
# [reader_beam_size, num_candidates]
reader_logits += retriever_logits
# []
predicted_block_index = torch.argmax(torch.max(reader_logits, dim=1).values)
# []
predicted_candidate = torch.argmax(torch.max(reader_logits, dim=0).values)
# [1]
predicted_start = torch.index_select(candidate_starts, dim=0, index=predicted_candidate)
# [1]
predicted_end = torch.index_select(candidate_ends, dim=0, index=predicted_candidate)
total_loss = None
retriever_loss = None
reader_loss = None
retriever_correct = None
reader_correct = None
if start_positions is not None and end_positions is not None and has_answers is not None:
def compute_correct_candidates(candidate_starts, candidate_ends, gold_starts, gold_ends):
"""Compute correct span."""
# [reader_beam_size, num_answers, num_candidates]
is_gold_start = torch.eq(
torch.unsqueeze(torch.unsqueeze(candidate_starts, 0), 0), torch.unsqueeze(gold_starts, -1)
)
is_gold_end = torch.eq(
torch.unsqueeze(torch.unsqueeze(candidate_ends, 0), 0), torch.unsqueeze(gold_ends, -1)
)
# [reader_beam_size, num_candidates]
return torch.any(torch.logical_and(is_gold_start, is_gold_end), 1)
def marginal_log_loss(logits, is_correct):
"""Loss based on the negative marginal log-likelihood."""
def mask_to_score(mask):
return (1.0 - mask.type(torch.float32)) * -10000.0
# []
log_numerator = torch.logsumexp(logits + mask_to_score(is_correct), dim=-1)
log_denominator = torch.logsumexp(logits, dim=-1)
return log_denominator - log_numerator
# sometimes the start/end positions are outside our model inputs, we ignore these terms
# `-1` is reserved for no answer.
ignored_index = sequence_output.size(1)
start_positions = start_positions.clamp(-1, ignored_index)
end_positions = end_positions.clamp(-1, ignored_index)
retriever_correct = has_answers
any_retriever_correct = torch.any(retriever_correct)
reader_correct = compute_correct_candidates(
candidate_starts=candidate_starts,
candidate_ends=candidate_ends,
gold_starts=start_positions[0 : self.config.reader_beam_size],
gold_ends=end_positions[0 : self.config.reader_beam_size],
)
any_reader_correct = torch.any(reader_correct)
retriever_loss = marginal_log_loss(relevance_score, retriever_correct)
reader_loss = marginal_log_loss(reader_logits.view(-1), reader_correct.view(-1))
retriever_loss *= any_retriever_correct.type(torch.float32)
reader_loss *= any_reader_correct.type(torch.float32)
total_loss = (retriever_loss + reader_loss).mean()
if not return_dict:
output = (predicted_block_index, predicted_candidate, predicted_start, predicted_end) + outputs[2:]
return (
((total_loss, retriever_loss, reader_loss, retriever_correct, reader_correct) + output)
if total_loss is not None
else output
)
return RealmReaderOutput(
loss=total_loss,
retriever_loss=retriever_loss,
reader_loss=reader_loss,
retriever_correct=retriever_correct,
reader_correct=reader_correct,
block_idx=predicted_block_index,
candidate=predicted_candidate,
start_pos=predicted_start,
end_pos=predicted_end,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
REALM_FOR_OPEN_QA_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`RealmTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token (should not be used in this model by design).
[What are token type IDs?](../glossary#token-type-ids)
answer_ids (`list` of shape `(num_answers, answer_length)`, *optional*):
Answer ids for computing the marginal log-likelihood loss. Indices should be in `[-1, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-1` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"`RealmForOpenQA` for end-to-end open domain question answering.",
REALM_START_DOCSTRING,
)
class RealmForOpenQA(RealmPreTrainedModel):
def __init__(self, config, retriever=None):
super().__init__(config)
self.embedder = RealmEmbedder(config)
self.reader = RealmReader(config)
self.register_buffer(
"block_emb",
torch.zeros(()).new_empty(
size=(config.num_block_records, config.retriever_proj_size),
dtype=torch.float32,
device=torch.device("cpu"),
),
)
self.retriever = retriever
self.post_init()
@property
def beam_size(self):
if self.training:
return self.config.searcher_beam_size
return self.config.reader_beam_size
@add_start_docstrings_to_model_forward(REALM_FOR_OPEN_QA_DOCSTRING.format("1, sequence_length"))
@replace_return_docstrings(output_type=RealmForOpenQAOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
answer_ids=None,
return_dict=None,
):
r"""
Returns:
Example:
```python
>>> import torch
>>> from transformers import RealmForOpenQA, RealmRetriever, RealmTokenizer
>>> retriever = RealmRetriever.from_pretrained("qqaatw/realm-orqa-nq-openqa")
>>> tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-orqa-nq-openqa")
>>> model = RealmForOpenQA.from_pretrained("qqaatw/realm-orqa-nq-openqa", retriever=retriever)
>>> question = "Who is the pioneer in modern computer science?"
>>> question_ids = tokenizer([question], return_tensors="pt")
>>> answer_ids = tokenizer(
... ["alan mathison turing"],
... add_special_tokens=False,
... return_token_type_ids=False,
... return_attention_mask=False,
>>> ).input_ids
>>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False)
>>> predicted_answer = tokenizer.decode(predicted_answer_ids)
>>> loss = reader_output.loss
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and input_ids.shape[0] != 1:
raise ValueError("The batch_size of the inputs must be 1.")
question_outputs = self.embedder(
input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, return_dict=True
)
# [1, projection_size]
question_projection = question_outputs[0]
# [1, block_emb_size]
batch_scores = torch.einsum("BD,QD->QB", self.block_emb, question_projection)
# [1, searcher_beam_size]
_, retrieved_block_ids = torch.topk(batch_scores, k=self.beam_size, dim=-1)
# [searcher_beam_size]
# Must convert to cpu tensor for subsequent numpy operations
retrieved_block_ids = retrieved_block_ids.squeeze().cpu()
# Retrieve possible answers
has_answers, start_pos, end_pos, concat_inputs = self.retriever(
retrieved_block_ids, input_ids, answer_ids, max_length=self.config.reader_seq_len
)
if has_answers is not None:
has_answers = torch.tensor(has_answers, dtype=torch.bool, device=self.reader.device)
start_pos = torch.tensor(start_pos, dtype=torch.long, device=self.reader.device)
end_pos = torch.tensor(end_pos, dtype=torch.long, device=self.reader.device)
concat_inputs = concat_inputs.to(self.reader.device)
# [searcher_beam_size, projection_size]
retrieved_block_emb = torch.index_select(
self.block_emb, dim=0, index=retrieved_block_ids.to(self.block_emb.device)
)
# [searcher_beam_size]
retrieved_logits = torch.einsum(
"D,BD->B", question_projection.squeeze(), retrieved_block_emb.to(question_projection.device)
)
reader_output = self.reader(
input_ids=concat_inputs.input_ids[0 : self.config.reader_beam_size],
attention_mask=concat_inputs.attention_mask[0 : self.config.reader_beam_size],
token_type_ids=concat_inputs.token_type_ids[0 : self.config.reader_beam_size],
relevance_score=retrieved_logits,
has_answers=has_answers,
start_positions=start_pos,
end_positions=end_pos,
return_dict=True,
)
predicted_block = concat_inputs.input_ids[reader_output.block_idx]
predicted_answer_ids = predicted_block[reader_output.start_pos : reader_output.end_pos + 1]
if not return_dict:
return reader_output, predicted_answer_ids
return RealmForOpenQAOutput(
reader_output=reader_output,
predicted_answer_ids=predicted_answer_ids,
)
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""REALM Retriever model implementation."""
import os
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...utils import logging
from .tokenization_realm import RealmTokenizer
_REALM_BLOCK_RECORDS_FILENAME = "block_records.npy"
logger = logging.get_logger(__name__)
def convert_tfrecord_to_np(block_records_path: str, num_block_records: int) -> np.ndarray:
import tensorflow.compat.v1 as tf
blocks_dataset = tf.data.TFRecordDataset(block_records_path, buffer_size=512 * 1024 * 1024)
blocks_dataset = blocks_dataset.batch(num_block_records, drop_remainder=True)
np_record = next(blocks_dataset.take(1).as_numpy_iterator())
return np_record
class ScaNNSearcher:
"""Note that ScaNNSearcher cannot currently be used within the model. In future versions, it might however be included."""
def __init__(
self,
db,
num_neighbors,
dimensions_per_block=2,
num_leaves=1000,
num_leaves_to_search=100,
training_sample_size=100000,
):
"""Build scann searcher."""
from scann.scann_ops.py.scann_ops_pybind import builder as Builder
builder = Builder(db=db, num_neighbors=num_neighbors, distance_measure="dot_product")
builder = builder.tree(
num_leaves=num_leaves, num_leaves_to_search=num_leaves_to_search, training_sample_size=training_sample_size
)
builder = builder.score_ah(dimensions_per_block=dimensions_per_block)
self.searcher = builder.build()
def search_batched(self, question_projection):
retrieved_block_ids, _ = self.searcher.search_batched(question_projection.detach().cpu())
return retrieved_block_ids.astype("int64")
class RealmRetriever:
"""The retriever of REALM outputting the retrieved evidence block and whether the block has answers as well as answer
positions."
Parameters:
block_records (`np.ndarray`):
A numpy array which cantains evidence texts.
tokenizer ([`RealmTokenizer`]):
The tokenizer to encode retrieved texts.
"""
def __init__(self, block_records, tokenizer):
super().__init__()
self.block_records = block_records
self.tokenizer = tokenizer
def __call__(self, retrieved_block_ids, question_input_ids, answer_ids, max_length=None, return_tensors="pt"):
retrieved_blocks = np.take(self.block_records, indices=retrieved_block_ids, axis=0)
question = self.tokenizer.decode(question_input_ids[0], skip_special_tokens=True)
text = []
text_pair = []
for retrieved_block in retrieved_blocks:
text.append(question)
text_pair.append(retrieved_block.decode())
concat_inputs = self.tokenizer(text, text_pair, padding=True, truncation=True, max_length=max_length)
concat_inputs_tensors = concat_inputs.convert_to_tensors(return_tensors)
if answer_ids is not None:
return self.block_has_answer(concat_inputs, answer_ids) + (concat_inputs_tensors,)
else:
return (None, None, None, concat_inputs_tensors)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *init_inputs, **kwargs):
if os.path.isdir(pretrained_model_name_or_path):
block_records_path = os.path.join(pretrained_model_name_or_path, _REALM_BLOCK_RECORDS_FILENAME)
else:
block_records_path = hf_hub_download(
repo_id=pretrained_model_name_or_path, filename=_REALM_BLOCK_RECORDS_FILENAME, **kwargs
)
block_records = np.load(block_records_path, allow_pickle=True)
tokenizer = RealmTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs)
return cls(block_records, tokenizer)
def save_pretrained(self, save_directory):
# save block records
np.save(os.path.join(save_directory, _REALM_BLOCK_RECORDS_FILENAME), self.block_records)
# save tokenizer
self.tokenizer.save_pretrained(save_directory)
def block_has_answer(self, concat_inputs, answer_ids):
"""check if retrieved_blocks has answers."""
has_answers = []
start_pos = []
end_pos = []
max_answers = 0
for input_id in concat_inputs.input_ids:
start_pos.append([])
end_pos.append([])
input_id_list = input_id.tolist()
# Checking answers after the [SEP] token
sep_idx = input_id_list.index(self.tokenizer.sep_token_id)
for answer in answer_ids:
for idx in range(sep_idx, len(input_id)):
if answer[0] == input_id_list[idx]:
if input_id_list[idx : idx + len(answer)] == answer:
start_pos[-1].append(idx)
end_pos[-1].append(idx + len(answer) - 1)
if len(start_pos[-1]) == 0:
has_answers.append(False)
else:
has_answers.append(True)
if len(start_pos[-1]) > max_answers:
max_answers = len(start_pos[-1])
# Pad -1 to max_answers
for start_pos_, end_pos_ in zip(start_pos, end_pos):
if len(start_pos_) < max_answers:
padded = [-1] * (max_answers - len(start_pos_))
start_pos_ += padded
end_pos_ += padded
return has_answers, start_pos, end_pos
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for REALM."""
from ...file_utils import PaddingStrategy
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from ..bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"realm-cc-news-pretrained-embedder": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt",
"realm-cc-news-pretrained-encoder": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt",
"realm-cc-news-pretrained-scorer": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt",
"realm-cc-news-pretrained-openqa": "https://huggingface.co/qqaatw/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt",
"realm-orqa-nq-openqa": "https://huggingface.co/qqaatw/realm-orqa-nq-openqa/resolve/main/vocab.txt",
"realm-orqa-nq-reader": "https://huggingface.co/qqaatw/realm-orqa-nq-reader/resolve/main/vocab.txt",
"realm-orqa-wq-openqa": "https://huggingface.co/qqaatw/realm-orqa-wq-openqa/resolve/main/vocab.txt",
"realm-orqa-wq-reader": "https://huggingface.co/qqaatw/realm-orqa-wq-reader/resolve/main/vocab.txt",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"realm-cc-news-pretrained-embedder": 512,
"realm-cc-news-pretrained-encoder": 512,
"realm-cc-news-pretrained-scorer": 512,
"realm-cc-news-pretrained-openqa": 512,
"realm-orqa-nq-openqa": 512,
"realm-orqa-nq-reader": 512,
"realm-orqa-wq-openqa": 512,
"realm-orqa-wq-reader": 512,
}
PRETRAINED_INIT_CONFIGURATION = {
"realm-cc-news-pretrained-embedder": {"do_lower_case": True},
"realm-cc-news-pretrained-encoder": {"do_lower_case": True},
"realm-cc-news-pretrained-scorer": {"do_lower_case": True},
"realm-cc-news-pretrained-openqa": {"do_lower_case": True},
"realm-orqa-nq-openqa": {"do_lower_case": True},
"realm-orqa-nq-reader": {"do_lower_case": True},
"realm-orqa-wq-openqa": {"do_lower_case": True},
"realm-orqa-wq-reader": {"do_lower_case": True},
}
class RealmTokenizer(BertTokenizer):
r"""
Construct a REALM tokenizer.
[`RealmTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting and
wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
def batch_encode_candidates(self, text, **kwargs):
r"""
Encode a batch of text or text pair. This method is similar to regular __call__ method but has the following
differences:
1. Handle additional num_candidate axis. (batch_size, num_candidates, text)
2. Always pad the sequences to *max_length*.
3. Must specify *max_length* in order to stack packs of candidates into a batch.
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
text (`List[List[str]]`):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
text_pair (`List[List[str]]`, *optional*):
The batch of sequences to be encoded. Each sequence must be in this format: (batch_size,
num_candidates, text).
**kwargs:
Keyword arguments of the __call__ method.
Returns:
[`BatchEncoding`]: Encoded text or text pair.
Example:
```python
>>> from transformers import RealmTokenizer
>>> # batch_size = 2, num_candidates = 2
>>> text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
>>> tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-cc-news-pretrained-encoder")
>>> tokenized_text = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
```"""
# Always using a fixed sequence length to encode in order to stack candidates into a batch.
kwargs["padding"] = PaddingStrategy.MAX_LENGTH
batch_text = text
batch_text_pair = kwargs.pop("text_pair", None)
return_tensors = kwargs.pop("return_tensors", None)
output_data = {
"input_ids": [],
"attention_mask": [],
"token_type_ids": [],
}
for idx, candidate_text in enumerate(batch_text):
if batch_text_pair is not None:
candidate_text_pair = batch_text_pair[idx]
else:
candidate_text_pair = None
encoded_candidates = super().__call__(candidate_text, candidate_text_pair, return_tensors=None, **kwargs)
encoded_input_ids = encoded_candidates.get("input_ids")
encoded_attention_mask = encoded_candidates.get("attention_mask")
encoded_token_type_ids = encoded_candidates.get("token_type_ids")
if encoded_input_ids is not None:
output_data["input_ids"].append(encoded_input_ids)
if encoded_attention_mask is not None:
output_data["attention_mask"].append(encoded_attention_mask)
if encoded_token_type_ids is not None:
output_data["token_type_ids"].append(encoded_token_type_ids)
output_data = dict((key, item) for key, item in output_data.items() if len(item) != 0)
return BatchEncoding(output_data, tensor_type=return_tensors)
...@@ -2783,6 +2783,62 @@ class RagTokenForGeneration(metaclass=DummyObject): ...@@ -2783,6 +2783,62 @@ class RagTokenForGeneration(metaclass=DummyObject):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None
class RealmEmbedder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmForOpenQA(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmKnowledgeAugEncoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmReader(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmRetriever(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class RealmScorer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
def load_tf_weights_in_realm(*args, **kwargs):
requires_backends(load_tf_weights_in_realm, ["torch"])
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch REALM model. """
import copy
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import RealmConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmReader,
RealmRetriever,
RealmScorer,
RealmTokenizer,
)
class RealmModelTester:
def __init__(
self,
parent,
batch_size=13,
retriever_proj_size=128,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=50,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=4,
reader_seq_len=288 + 32,
num_block_records=13353718,
searcher_beam_size=8,
searcher_seq_len=64,
num_labels=3,
num_choices=4,
num_candidates=10,
scope=None,
):
# General config
self.parent = parent
self.batch_size = batch_size
self.retriever_proj_size = retriever_proj_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Searcher config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size
self.searcher_seq_len = searcher_seq_len
self.num_labels = num_labels
self.num_choices = num_choices
self.num_candidates = num_candidates
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
candiate_input_ids = ids_tensor([self.batch_size, self.num_candidates, self.seq_length], self.vocab_size)
reader_input_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.vocab_size)
input_mask = None
candiate_input_mask = None
reader_input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
candiate_input_mask = random_attention_mask([self.batch_size, self.num_candidates, self.seq_length])
reader_input_mask = random_attention_mask([self.reader_beam_size, self.reader_seq_len])
token_type_ids = None
candidate_token_type_ids = None
reader_token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
candidate_token_type_ids = ids_tensor(
[self.batch_size, self.num_candidates, self.seq_length], self.type_vocab_size
)
reader_token_type_ids = ids_tensor([self.reader_beam_size, self.reader_seq_len], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
# inputs with additional num_candidates axis.
scorer_encoder_inputs = (candiate_input_ids, candiate_input_mask, candidate_token_type_ids)
# reader inputs
reader_inputs = (reader_input_ids, reader_input_mask, reader_token_type_ids)
return (
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(self):
return RealmConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
retriever_proj_size=self.retriever_proj_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_candidates=self.num_candidates,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
def create_and_check_embedder(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmEmbedder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.projected_score.shape, (self.batch_size, self.retriever_proj_size))
def create_and_check_encoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmKnowledgeAugEncoder(config=config)
model.to(torch_device)
model.eval()
relevance_score = floats_tensor([self.batch_size, self.num_candidates])
result = model(
scorer_encoder_inputs[0],
attention_mask=scorer_encoder_inputs[1],
token_type_ids=scorer_encoder_inputs[2],
relevance_score=relevance_score,
labels=token_labels,
)
self.parent.assertEqual(
result.logits.shape, (self.batch_size * self.num_candidates, self.seq_length, self.vocab_size)
)
def create_and_check_reader(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmReader(config=config)
model.to(torch_device)
model.eval()
relevance_score = floats_tensor([self.reader_beam_size])
result = model(
reader_inputs[0],
attention_mask=reader_inputs[1],
token_type_ids=reader_inputs[2],
relevance_score=relevance_score,
)
self.parent.assertEqual(result.block_idx.shape, ())
self.parent.assertEqual(result.candidate.shape, ())
self.parent.assertEqual(result.start_pos.shape, ())
self.parent.assertEqual(result.end_pos.shape, ())
def create_and_check_scorer(
self,
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
):
model = RealmScorer(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
candidate_input_ids=scorer_encoder_inputs[0],
candidate_attention_mask=scorer_encoder_inputs[1],
candidate_token_type_ids=scorer_encoder_inputs[2],
)
self.parent.assertEqual(result.relevance_score.shape, (self.batch_size, self.num_candidates))
self.parent.assertEqual(result.query_score.shape, (self.batch_size, self.retriever_proj_size))
self.parent.assertEqual(
result.candidate_score.shape, (self.batch_size, self.num_candidates, self.retriever_proj_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
scorer_encoder_inputs,
reader_inputs,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class RealmModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
RealmEmbedder,
RealmKnowledgeAugEncoder,
# RealmScorer is excluded from common tests as it is a container model
# consisting of two RealmEmbedders & a simple inner product calculation.
# RealmScorer
)
if is_torch_available()
else ()
)
all_generative_model_classes = ()
# disable these tests because there is no base_model in Realm
test_save_load_fast_init_from_base = False
test_save_load_fast_init_to_base = False
def setUp(self):
self.test_pruning = False
self.model_tester = RealmModelTester(self)
self.config_tester = ConfigTester(self, config_class=RealmConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_embedder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_embedder(*config_and_inputs)
def test_encoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_embedder(*config_and_inputs)
self.model_tester.create_and_check_encoder(*config_and_inputs)
def test_retriever(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_scorer(*config_and_inputs)
def test_training(self):
if not self.model_tester.is_training:
return
config, *inputs = self.model_tester.prepare_config_and_inputs()
input_ids, token_type_ids, input_mask, scorer_encoder_inputs = inputs[0:4]
config.return_dict = True
tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-orqa-nq-openqa")
# RealmKnowledgeAugEncoder training
model = RealmKnowledgeAugEncoder(config)
model.to(torch_device)
model.train()
inputs_dict = {
"input_ids": scorer_encoder_inputs[0].to(torch_device),
"attention_mask": scorer_encoder_inputs[1].to(torch_device),
"token_type_ids": scorer_encoder_inputs[2].to(torch_device),
"relevance_score": floats_tensor([self.model_tester.batch_size, self.model_tester.num_candidates]),
}
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs = inputs_dict
loss = model(**inputs).loss
loss.backward()
# RealmForOpenQA training
openqa_config = copy.deepcopy(config)
openqa_config.vocab_size = 30522 # the retrieved texts will inevitably have more than 99 vocabs.
openqa_config.num_block_records = 5
openqa_config.searcher_beam_size = 2
block_records = np.array(
[
b"This is the first record.",
b"This is the second record.",
b"This is the third record.",
b"This is the fourth record.",
b"This is the fifth record.",
],
dtype=np.object,
)
retriever = RealmRetriever(block_records, tokenizer)
model = RealmForOpenQA(openqa_config, retriever)
model.to(torch_device)
model.train()
inputs_dict = {
"input_ids": input_ids[:1].to(torch_device),
"attention_mask": input_mask[:1].to(torch_device),
"token_type_ids": token_type_ids[:1].to(torch_device),
"answer_ids": input_ids[:1].tolist(),
}
inputs = self._prepare_for_class(inputs_dict, RealmForOpenQA)
loss = model(**inputs).reader_output.loss
loss.backward()
@slow
def test_embedder_from_pretrained(self):
model = RealmEmbedder.from_pretrained("qqaatw/realm-cc-news-pretrained-embedder")
self.assertIsNotNone(model)
@slow
def test_encoder_from_pretrained(self):
model = RealmKnowledgeAugEncoder.from_pretrained("qqaatw/realm-cc-news-pretrained-encoder")
self.assertIsNotNone(model)
@slow
def test_open_qa_from_pretrained(self):
model = RealmForOpenQA.from_pretrained("qqaatw/realm-orqa-nq-openqa")
self.assertIsNotNone(model)
@slow
def test_reader_from_pretrained(self):
model = RealmReader.from_pretrained("qqaatw/realm-orqa-nq-reader")
self.assertIsNotNone(model)
@slow
def test_scorer_from_pretrained(self):
model = RealmScorer.from_pretrained("qqaatw/realm-cc-news-pretrained-scorer")
self.assertIsNotNone(model)
@require_torch
class RealmModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_embedder(self):
retriever_projected_size = 128
model = RealmEmbedder.from_pretrained("qqaatw/realm-cc-news-pretrained-embedder")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = torch.Size((1, retriever_projected_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[-0.0714, -0.0837, -0.1314]])
self.assertTrue(torch.allclose(output[:, :3], expected_slice, atol=1e-4))
@slow
def test_inference_encoder(self):
num_candidates = 2
vocab_size = 30522
model = RealmKnowledgeAugEncoder.from_pretrained(
"qqaatw/realm-cc-news-pretrained-encoder", num_candidates=num_candidates
)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
relevance_score = torch.tensor([[0.3, 0.7]], dtype=torch.float32)
output = model(input_ids, relevance_score=relevance_score)[0]
expected_shape = torch.Size((2, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[[-11.0888, -11.2544], [-10.2170, -10.3874]]])
self.assertTrue(torch.allclose(output[1, :2, :2], expected_slice, atol=1e-4))
@slow
def test_inference_open_qa(self):
from transformers.models.realm.retrieval_realm import RealmRetriever
config = RealmConfig()
tokenizer = RealmTokenizer.from_pretrained("qqaatw/realm-orqa-nq-openqa")
retriever = RealmRetriever.from_pretrained("qqaatw/realm-orqa-nq-openqa")
model = RealmForOpenQA.from_pretrained(
"qqaatw/realm-orqa-nq-openqa",
retriever=retriever,
config=config,
)
question = "Who is the pioneer in modern computer science?"
question = tokenizer(
[question],
padding=True,
truncation=True,
max_length=model.config.searcher_seq_len,
return_tensors="pt",
).to(model.device)
predicted_answer_ids = model(**question).predicted_answer_ids
predicted_answer = tokenizer.decode(predicted_answer_ids)
self.assertEqual(predicted_answer, "alan mathison turing")
@slow
def test_inference_reader(self):
config = RealmConfig(reader_beam_size=2, max_span_width=3)
model = RealmReader.from_pretrained("qqaatw/realm-orqa-nq-reader", config=config)
concat_input_ids = torch.arange(10).view((2, 5))
concat_token_type_ids = torch.tensor([[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]], dtype=torch.int64)
relevance_score = torch.tensor([0.3, 0.7], dtype=torch.float32)
output = model(
concat_input_ids, token_type_ids=concat_token_type_ids, relevance_score=relevance_score, return_dict=True
)
block_idx_expected_shape = torch.Size(())
start_pos_expected_shape = torch.Size((1,))
end_pos_expected_shape = torch.Size((1,))
self.assertEqual(output.block_idx.shape, block_idx_expected_shape)
self.assertEqual(output.start_pos.shape, start_pos_expected_shape)
self.assertEqual(output.end_pos.shape, end_pos_expected_shape)
expected_block_idx = torch.tensor(1)
expected_start_pos = torch.tensor(3)
expected_end_pos = torch.tensor(3)
self.assertTrue(torch.allclose(output.block_idx, expected_block_idx, atol=1e-4))
self.assertTrue(torch.allclose(output.start_pos, expected_start_pos, atol=1e-4))
self.assertTrue(torch.allclose(output.end_pos, expected_end_pos, atol=1e-4))
@slow
def test_inference_scorer(self):
num_candidates = 2
model = RealmScorer.from_pretrained("qqaatw/realm-cc-news-pretrained-scorer", num_candidates=num_candidates)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
candidate_input_ids = torch.tensor([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
output = model(input_ids, candidate_input_ids=candidate_input_ids)[0]
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[0.7410, 0.7170]])
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class RealmRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.num_block_records = 5
# Realm tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"test",
"question",
"this",
"is",
"the",
"first",
"second",
"third",
"fourth",
"fifth",
"record",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
realm_tokenizer_path = os.path.join(self.tmpdirname, "realm_tokenizer")
os.makedirs(realm_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(realm_tokenizer_path, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
realm_block_records_path = os.path.join(self.tmpdirname, "realm_block_records")
os.makedirs(realm_block_records_path, exist_ok=True)
def get_tokenizer(self) -> RealmTokenizer:
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, "realm_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_config(self):
config = RealmConfig(num_block_records=self.num_block_records)
return config
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"question": ["foo", "bar"],
"answers": [["Foo", "Bar"], ["Bar"]],
}
)
return dataset
def get_dummy_block_records(self):
block_records = np.array(
[
b"This is the first record",
b"This is the second record",
b"This is the third record",
b"This is the fourth record",
b"This is the fifth record",
],
dtype=np.object,
)
return block_records
def get_dummy_retriever(self):
retriever = RealmRetriever(
block_records=self.get_dummy_block_records(),
tokenizer=self.get_tokenizer(),
)
return retriever
def test_retrieve(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, concat_inputs = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual(len(has_answers), 2)
self.assertEqual(len(start_pos), 2)
self.assertEqual(len(end_pos), 2)
self.assertEqual(concat_inputs.input_ids.shape, (2, 10))
self.assertEqual(concat_inputs.attention_mask.shape, (2, 10))
self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10))
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"],
)
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]),
["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"],
)
def test_block_has_answer(self):
config = self.get_config()
retriever = self.get_dummy_retriever()
tokenizer = retriever.tokenizer
retrieved_block_ids = np.array([0, 3], dtype=np.long)
question_input_ids = tokenizer(["Test question"]).input_ids
answer_ids = tokenizer(
["the fourth"],
add_special_tokens=False,
return_token_type_ids=False,
return_attention_mask=False,
).input_ids
max_length = config.reader_seq_len
has_answers, start_pos, end_pos, _ = retriever(
retrieved_block_ids, question_input_ids, answer_ids=answer_ids, max_length=max_length, return_tensors="np"
)
self.assertEqual([False, True], has_answers)
self.assertEqual([[-1], [6]], start_pos)
self.assertEqual([[-1], [7]], end_pos)
def test_save_load_pretrained(self):
retriever = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
# Test local path
retriever = retriever.from_pretrained(os.path.join(self.tmpdirname, "realm_block_records"))
self.assertEqual(retriever.block_records[0], b"This is the first record")
# Test mocked remote path
with patch("transformers.models.realm.retrieval_realm.hf_hub_download") as mock_hf_hub_download:
mock_hf_hub_download.return_value = os.path.join(
os.path.join(self.tmpdirname, "realm_block_records"), _REALM_BLOCK_RECORDS_FILENAME
)
retriever = RealmRetriever.from_pretrained("qqaatw/realm-cc-news-pretrained-openqa")
self.assertEqual(retriever.block_records[0], b"This is the first record")
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.realm.tokenization_realm import RealmTokenizer
from transformers.testing_utils import require_tokenizers, slow
from .test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class RealmTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = RealmTokenizer
rust_tokenizer_class = None
test_rust_tokenizer = False
space_between_special_tokens = True
from_pretrained_filter = filter_non_english
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00E9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00E9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11])
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# With lower casing
tokenizer = self.get_tokenizer(do_lower_case=True)
rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True)
sequence = "UNwant\u00E9d,running"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_chinese(self):
tokenizer = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"])
def test_basic_tokenizer_lower(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"])
def test_basic_tokenizer_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_lower_strip_accents_default(self):
tokenizer = BasicTokenizer(do_lower_case=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"]
)
self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"])
def test_basic_tokenizer_no_lower(self):
tokenizer = BasicTokenizer(do_lower_case=False)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_false(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_no_lower_strip_accents_true(self):
tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"]
)
def test_basic_tokenizer_respects_never_split_tokens(self):
tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
vocab = {}
for (i, token) in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
def test_is_whitespace(self):
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def test_is_control(self):
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def test_is_punctuation(self):
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def test_clean_text(self):
tokenizer = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]])
if self.test_rust_tokenizer:
rust_tokenizer = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]
)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text = tokenizer.encode("sequence builders", add_special_tokens=False)
text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_2 + [102]
def test_offsets_with_special_characters(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence."
tokens = tokenizer_r.encode_plus(
sentence,
return_attention_mask=False,
return_token_type_ids=False,
return_offsets_mapping=True,
add_special_tokens=True,
)
do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False
expected_results = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])
)
self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
@slow
def test_batch_encode_candidates(self):
tokenizer = self.tokenizer_class.from_pretrained("bert-base-uncased")
text = [["Hello world!", "Nice to meet you!"], ["The cute cat.", "The adorable dog."]]
encoded_sentence = tokenizer.batch_encode_candidates(text, max_length=10, return_tensors="pt")
expected_shape = (2, 2, 10)
assert encoded_sentence["input_ids"].shape == expected_shape
assert encoded_sentence["attention_mask"].shape == expected_shape
assert encoded_sentence["token_type_ids"].shape == expected_shape
...@@ -35,6 +35,7 @@ PATH_TO_DOC = "docs/source" ...@@ -35,6 +35,7 @@ PATH_TO_DOC = "docs/source"
# Update this list with models that are supposed to be private. # Update this list with models that are supposed to be private.
PRIVATE_MODELS = [ PRIVATE_MODELS = [
"DPRSpanPredictor", "DPRSpanPredictor",
"RealmBertModel",
"T5Stack", "T5Stack",
"TFDPRSpanPredictor", "TFDPRSpanPredictor",
] ]
...@@ -73,6 +74,10 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [ ...@@ -73,6 +74,10 @@ IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
"PegasusDecoderWrapper", # Building part of bigger (tested) model. "PegasusDecoderWrapper", # Building part of bigger (tested) model.
"DPREncoder", # Building part of bigger (tested) model. "DPREncoder", # Building part of bigger (tested) model.
"ProphetNetDecoderWrapper", # Building part of bigger (tested) model. "ProphetNetDecoderWrapper", # Building part of bigger (tested) model.
"RealmBertModel", # Building part of bigger (tested) model.
"RealmReader", # Not regular model.
"RealmScorer", # Not regular model.
"RealmForOpenQA", # Not regular model.
"ReformerForMaskedLM", # Needs to be setup as decoder. "ReformerForMaskedLM", # Needs to be setup as decoder.
"Speech2Text2DecoderWrapper", # Building part of bigger (tested) model. "Speech2Text2DecoderWrapper", # Building part of bigger (tested) model.
"TFDPREncoder", # Building part of bigger (tested) model. "TFDPREncoder", # Building part of bigger (tested) model.
...@@ -129,6 +134,10 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [ ...@@ -129,6 +134,10 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
"RagModel", "RagModel",
"RagSequenceForGeneration", "RagSequenceForGeneration",
"RagTokenForGeneration", "RagTokenForGeneration",
"RealmEmbedder",
"RealmForOpenQA",
"RealmScorer",
"RealmReader",
"TFDPRReader", "TFDPRReader",
"TFGPT2DoubleHeadsModel", "TFGPT2DoubleHeadsModel",
"TFOpenAIGPTDoubleHeadsModel", "TFOpenAIGPTDoubleHeadsModel",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment