Unverified Commit 21637d49 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into do_lower_case

parents 7246d3c2 de2696f6
......@@ -220,7 +220,8 @@ CTRL_INPUTS_DOCSTRING = r""" Inputs:
**past**:
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `past` output below). Can be used to speed up sequential decoding.
(see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
......@@ -252,7 +253,8 @@ class CTRLModel(CTRLPreTrainedModel):
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
......@@ -437,7 +439,8 @@ class CTRLLMHeadModel(CTRLPreTrainedModel):
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
......
......@@ -30,6 +30,7 @@ import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_distilbert import DistilBertConfig
......@@ -702,3 +703,75 @@ class DistilBertForQuestionAnswering(DistilBertPreTrainedModel):
outputs = (total_loss,) + outputs
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
@add_start_docstrings("""DistilBert Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
DISTILBERT_START_DOCSTRING,
DISTILBERT_INPUTS_DOCSTRING)
class DistilBertForTokenClassification(DistilBertPreTrainedModel):
r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification loss.
**scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
Classification scores (before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
model = DistilBertForTokenClassification.from_pretrained('distilbert-base-uncased')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, scores = outputs[:2]
"""
def __init__(self, config):
super(DistilBertForTokenClassification, self).__init__(config)
self.num_labels = config.num_labels
self.distilbert = DistilBertModel(config)
self.dropout = nn.Dropout(config.dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(self, input_ids=None, attention_mask=None, head_mask=None,
inputs_embeds=None, labels=None):
outputs = self.distilbert(input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)[active_loss]
active_labels = labels.view(-1)[active_loss]
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), scores, (hidden_states), (attentions)
......@@ -298,7 +298,8 @@ GPT2_INPUTS_DOCSTRING = r""" Inputs:
**past**:
list of ``torch.FloatTensor`` (one for each layer):
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
(see `past` output below). Can be used to speed up sequential decoding.
(see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
......@@ -330,7 +331,8 @@ class GPT2Model(GPT2PreTrainedModel):
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
......@@ -503,7 +505,8 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
......@@ -595,7 +598,8 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
**past**:
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
that contains pre-computed hidden-states (key and values in the attention blocks).
Can be used (see `past` input) to speed up sequential decoding.
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
should not be passed as input ids as they have already been computed.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
......
This diff is collapsed.
......@@ -142,19 +142,25 @@ class TFBertEmbeddings(tf.keras.layers.Layer):
def _embedding(self, inputs, training=False):
"""Applies embedding based on inputs tensor."""
input_ids, position_ids, token_type_ids = inputs
input_ids, position_ids, token_type_ids, inputs_embeds = inputs
seq_length = tf.shape(input_ids)[1]
if input_ids is not None:
input_shape = tf.shape(input_ids)
else:
input_shape = tf.shape(inputs_embeds)[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
if token_type_ids is None:
token_type_ids = tf.fill(tf.shape(input_ids), 0)
token_type_ids = tf.fill(input_shape, 0)
words_embeddings = tf.gather(self.word_embeddings, input_ids)
if inputs_embeds is None:
inputs_embeds = tf.gather(self.word_embeddings, input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings, training=training)
return embeddings
......@@ -460,6 +466,9 @@ class TFBertMainLayer(tf.keras.layers.Layer):
self.encoder = TFBertEncoder(config, name='encoder')
self.pooler = TFBertPooler(config, name='pooler')
def get_input_embeddings(self):
return self.embeddings
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
......@@ -470,28 +479,39 @@ class TFBertMainLayer(tf.keras.layers.Layer):
"""
raise NotImplementedError
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
assert len(inputs) <= 6, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 6, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.shape[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(tf.shape(input_ids), 1)
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(tf.shape(input_ids), 0)
token_type_ids = tf.fill(input_shape, 0)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
......@@ -520,7 +540,7 @@ class TFBertMainLayer(tf.keras.layers.Layer):
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
embedding_output = self.embeddings([input_ids, position_ids, token_type_ids], training=training)
embedding_output = self.embeddings([input_ids, position_ids, token_type_ids, inputs_embeds], training=training)
encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training)
sequence_output = encoder_outputs[0]
......@@ -702,6 +722,9 @@ class TFBertForPreTraining(TFBertPreTrainedModel):
self.nsp = TFBertNSPHead(config, name='nsp___cls')
self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
def get_output_embeddings(self):
return self.bert.embeddings
def call(self, inputs, **kwargs):
outputs = self.bert(inputs, **kwargs)
......@@ -747,6 +770,9 @@ class TFBertForMaskedLM(TFBertPreTrainedModel):
self.bert = TFBertMainLayer(config, name='bert')
self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
def get_output_embeddings(self):
return self.bert.embeddings
def call(self, inputs, **kwargs):
outputs = self.bert(inputs, **kwargs)
......@@ -892,33 +918,39 @@ class TFBertForMultipleChoice(TFBertPreTrainedModel):
kernel_initializer=get_initializer(config.initializer_range),
name='classifier')
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
assert len(inputs) <= 6, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 6, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None:
num_choices = tf.shape(input_ids)[1]
seq_length = tf.shape(input_ids)[2]
else:
num_choices = tf.shape(inputs_embeds)[1]
seq_length = tf.shape(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds]
outputs = self.bert(flat_inputs, training=training)
......
......@@ -192,6 +192,9 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
name='h_._{}'.format(i)) for i in range(config.n_layer)]
self.layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="layernorm")
def get_input_embeddings(self):
return self.w
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
......@@ -201,7 +204,7 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
"""
raise NotImplementedError
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
past = inputs[1] if len(inputs) > 1 else past
......@@ -209,7 +212,8 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
position_ids = inputs[4] if len(inputs) > 4 else position_ids
head_mask = inputs[5] if len(inputs) > 5 else head_mask
assert len(inputs) <= 6, "Too many inputs."
inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
past = inputs.get('past', past)
......@@ -217,12 +221,20 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 6, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past is None:
past_length = 0
......@@ -230,8 +242,8 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
else:
past_length = shape_list(past[0][0])[-2]
if position_ids is None:
position_ids = tf.range(past_length, shape_list(input_ids)[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]
position_ids = tf.tile(position_ids, [shape_list(input_ids)[0], 1])
position_ids = tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]
position_ids = tf.tile(position_ids, [input_shape[0], 1])
# Attention mask.
if attention_mask is not None:
......@@ -270,8 +282,8 @@ class TFCTRLMainLayer(tf.keras.layers.Layer):
token_type_embeds = 0
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
inputs_embeds = self.w(input_ids, mode='embedding')
# x = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
seq_len = input_shape[-1]
mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
......@@ -480,6 +492,9 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head")
def get_output_embeddings(self):
return self.lm_head.input_embeddings
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
hidden_states = transformer_outputs[0]
......
......@@ -96,7 +96,7 @@ class TFEmbeddings(tf.keras.layers.Layer):
initializer=get_initializer(self.initializer_range))
super(TFEmbeddings, self).build(input_shape)
def call(self, inputs, mode="embedding", training=False):
def call(self, inputs, inputs_embeds=None, mode="embedding", training=False):
"""Get token embeddings of inputs.
Args:
inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
......@@ -112,13 +112,13 @@ class TFEmbeddings(tf.keras.layers.Layer):
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
"""
if mode == "embedding":
return self._embedding(inputs, training=training)
return self._embedding(inputs, inputs_embeds=inputs_embeds, training=training)
elif mode == "linear":
return self._linear(inputs)
else:
raise ValueError("mode {} is not valid.".format(mode))
def _embedding(self, inputs, training=False):
def _embedding(self, inputs, inputs_embeds=None, training=False):
"""
Parameters
----------
......@@ -136,14 +136,19 @@ class TFEmbeddings(tf.keras.layers.Layer):
else:
input_ids, position_ids = inputs
if input_ids is not None:
seq_length = tf.shape(input_ids)[1]
else:
seq_length = tf.shape(inputs_embeds)[1]
if position_ids is None:
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
word_embeddings = tf.gather(self.word_embeddings, input_ids)
if inputs_embeds is None:
inputs_embeds = tf.gather(self.word_embeddings, input_ids)
position_embeddings = self.position_embeddings(position_ids) # (bs, max_seq_length, dim)
embeddings = word_embeddings + position_embeddings # (bs, max_seq_length, dim)
embeddings = inputs_embeds + position_embeddings # (bs, max_seq_length, dim)
embeddings = self.LayerNorm(embeddings) # (bs, max_seq_length, dim)
embeddings = self.dropout(embeddings, training=training) # (bs, max_seq_length, dim)
return embeddings
......@@ -398,28 +403,42 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
self.embeddings = TFEmbeddings(config, name="embeddings") # Embeddings
self.transformer = TFTransformer(config, name="transformer") # Encoder
def get_input_embeddings(self):
return self.embeddings
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def call(self, inputs, attention_mask=None, head_mask=None, training=False):
def call(self, inputs, attention_mask=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
head_mask = inputs[2] if len(inputs) > 2 else head_mask
assert len(inputs) <= 3, "Too many inputs."
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
assert len(inputs) <= 4, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 3, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 4, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.ones(shape_list(input_ids)) # (bs, seq_length)
attention_mask = tf.ones(input_shape) # (bs, seq_length)
attention_mask = tf.cast(attention_mask, dtype=tf.float32)
# Prepare head mask if needed
......@@ -432,7 +451,7 @@ class TFDistilBertMainLayer(tf.keras.layers.Layer):
else:
head_mask = [None] * self.num_hidden_layers
embedding_output = self.embeddings(input_ids) # (bs, seq_length, dim)
embedding_output = self.embeddings(input_ids, inputs_embeds=inputs_embeds) # (bs, seq_length, dim)
tfmr_output = self.transformer([embedding_output, attention_mask, head_mask], training=training)
return tfmr_output # last-layer hidden-state, (all hidden_states), (all attentions)
......@@ -613,6 +632,9 @@ class TFDistilBertForMaskedLM(TFDistilBertPreTrainedModel):
self.vocab_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-12, name="vocab_layer_norm")
self.vocab_projector = TFDistilBertLMHead(config, self.distilbert.embeddings, name="vocab_projector")
def get_output_embeddings(self):
return self.vocab_projector.input_embeddings
def call(self, inputs, **kwargs):
distilbert_output = self.distilbert(inputs, **kwargs)
......
......@@ -219,6 +219,9 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
name='h_._{}'.format(i)) for i in range(config.n_layer)]
self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f')
def get_input_embeddings(self):
return self.wte
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
......@@ -228,7 +231,7 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
"""
raise NotImplementedError
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
past = inputs[1] if len(inputs) > 1 else past
......@@ -236,7 +239,8 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
position_ids = inputs[4] if len(inputs) > 4 else position_ids
head_mask = inputs[5] if len(inputs) > 5 else head_mask
assert len(inputs) <= 6, "Too many inputs."
inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
past = inputs.get('past', past)
......@@ -244,17 +248,28 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 6, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past is None:
past_length = 0
past = [None] * len(self.h)
else:
past_length = shape_list(past[0][0])[-2]
if position_ids is None:
position_ids = tf.range(past_length, shape_list(input_ids)[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]
position_ids = tf.range(past_length, input_shape[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
......@@ -286,10 +301,9 @@ class TFGPT2MainLayer(tf.keras.layers.Layer):
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids, mode='embedding')
position_embeds = self.wpe(position_ids)
if token_type_ids is not None:
......@@ -490,6 +504,9 @@ class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
super(TFGPT2LMHeadModel, self).__init__(config, *inputs, **kwargs)
self.transformer = TFGPT2MainLayer(config, name='transformer')
def get_output_embeddings(self):
return self.transformer.wte
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
hidden_states = transformer_outputs[0]
......@@ -560,7 +577,10 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
self.transformer = TFGPT2MainLayer(config, name='transformer')
self.multiple_choice_head = TFSequenceSummary(config, initializer_range=config.initializer_range, name='multiple_choice_head')
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, mc_token_ids=None, training=False):
def get_output_embeddings(self):
return self.transformer.wte
def call(self, inputs, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
past = inputs[1] if len(inputs) > 1 else past
......@@ -568,8 +588,9 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
token_type_ids = inputs[3] if len(inputs) > 3 else token_type_ids
position_ids = inputs[4] if len(inputs) > 4 else position_ids
head_mask = inputs[5] if len(inputs) > 5 else head_mask
mc_token_ids = inputs[6] if len(inputs) > 6 else mc_token_ids
assert len(inputs) <= 7, "Too many inputs."
inputs_embeds = inputs[6] if len(inputs) > 6 else inputs_embeds
mc_token_ids = inputs[7] if len(inputs) > 7 else mc_token_ids
assert len(inputs) <= 8, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
past = inputs.get('past', past)
......@@ -577,21 +598,25 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
mc_token_ids = inputs.get('mc_token_ids', mc_token_ids)
assert len(inputs) <= 7, "Too many inputs."
assert len(inputs) <= 8, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None:
input_shapes = shape_list(input_ids)
else:
input_shapes = shape_list(inputs_embeds)[:-1]
seq_length = input_shapes[-1]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs = [flat_input_ids, past, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]
flat_inputs = [flat_input_ids, past, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds]
transformer_outputs = self.transformer(flat_inputs, training=training)
hidden_states = transformer_outputs[0]
......
......@@ -217,6 +217,9 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
scale=True,
name='h_._{}'.format(i)) for i in range(config.n_layer)]
def get_input_embeddings(self):
return self.tokens_embed
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
......@@ -226,26 +229,38 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
"""
raise NotImplementedError
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
assert len(inputs) <= 6, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 5, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 6, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if position_ids is None:
position_ids = tf.range(shape_list(input_ids)[-1], dtype=tf.int32)[tf.newaxis, :]
position_ids = tf.range(input_shape[-1], dtype=tf.int32)[tf.newaxis, :]
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
......@@ -277,10 +292,9 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
head_mask = [None] * self.num_hidden_layers
# head_mask = tf.constant([0] * self.num_hidden_layers)
input_shape = shape_list(input_ids)
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
if inputs_embeds is None:
inputs_embeds = self.tokens_embed(input_ids, mode='embedding')
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
......@@ -462,6 +476,9 @@ class TFOpenAIGPTLMHeadModel(TFOpenAIGPTPreTrainedModel):
super(TFOpenAIGPTLMHeadModel, self).__init__(config, *inputs, **kwargs)
self.transformer = TFOpenAIGPTMainLayer(config, name='transformer')
def get_output_embeddings(self):
return self.transformer.tokens_embed
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
hidden_states = transformer_outputs[0]
......@@ -524,36 +541,44 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
self.transformer = TFOpenAIGPTMainLayer(config, name='transformer')
self.multiple_choice_head = TFSequenceSummary(config, initializer_range=config.initializer_range, name='multiple_choice_head')
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, mc_token_ids=None, training=False):
def get_output_embeddings(self):
return self.transformer.tokens_embed
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
position_ids = inputs[3] if len(inputs) > 3 else position_ids
head_mask = inputs[4] if len(inputs) > 4 else head_mask
mc_token_ids = inputs[5] if len(inputs) > 5 else mc_token_ids
assert len(inputs) <= 6, "Too many inputs."
inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds
mc_token_ids = inputs[6] if len(inputs) > 6 else mc_token_ids
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
token_type_ids = inputs.get('token_type_ids', token_type_ids)
position_ids = inputs.get('position_ids', position_ids)
head_mask = inputs.get('head_mask', head_mask)
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
mc_token_ids = inputs.get('mc_token_ids', mc_token_ids)
assert len(inputs) <= 6, "Too many inputs."
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None:
input_shapes = shape_list(input_ids)
else:
input_shapes = shape_list(inputs_embeds)[:-1]
seq_length = input_shapes[-1]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds]
transformer_outputs = self.transformer(flat_inputs, training=training)
hidden_states = transformer_outputs[0]
......
......@@ -48,13 +48,17 @@ class TFRobertaEmbeddings(TFBertEmbeddings):
def _embedding(self, inputs, training=False):
"""Applies embedding based on inputs tensor."""
input_ids, position_ids, token_type_ids = inputs
input_ids, position_ids, token_type_ids, inputs_embeds = inputs
if input_ids is not None:
seq_length = tf.shape(input_ids)[1]
else:
seq_length = tf.shape(inputs_embeds)[1]
if position_ids is None:
position_ids = tf.range(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=tf.int32)[tf.newaxis, :]
return super(TFRobertaEmbeddings, self)._embedding([input_ids, position_ids, token_type_ids], training=training)
return super(TFRobertaEmbeddings, self)._embedding([input_ids, position_ids, token_type_ids, inputs_embeds], training=training)
class TFRobertaMainLayer(TFBertMainLayer):
......@@ -65,6 +69,9 @@ class TFRobertaMainLayer(TFBertMainLayer):
super(TFRobertaMainLayer, self).__init__(config, **kwargs)
self.embeddings = TFRobertaEmbeddings(config, name='embeddings')
def get_input_embeddings(self):
return self.embeddings
class TFRobertaPreTrainedModel(TFPreTrainedModel):
""" An abstract class to handle weights initialization and
......@@ -280,6 +287,9 @@ class TFRobertaForMaskedLM(TFRobertaPreTrainedModel):
self.roberta = TFRobertaMainLayer(config, name="roberta")
self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
def get_output_embeddings(self):
return self.lm_head.decoder
def call(self, inputs, **kwargs):
outputs = self.roberta(inputs, **kwargs)
......
......@@ -413,6 +413,9 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
name='r_r_bias')
super(TFTransfoXLMainLayer, self).build(input_shape)
def get_input_embeddings(self):
return self.word_emb
def _resize_token_embeddings(self, new_num_tokens):
return self.word_emb
......@@ -427,11 +430,11 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
def _prune_heads(self, heads):
raise NotImplementedError
def init_mems(self, data):
def init_mems(self, bsz):
if self.mem_len > 0:
mems = []
for i in range(self.n_layer):
empty = tf.zeros([self.mem_len, shape_list(data)[1], self.d_model])
empty = tf.zeros([self.mem_len, bsz, self.d_model])
mems.append(empty)
return mems
......@@ -461,28 +464,37 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
return new_mems
def call(self, inputs, mems=None, head_mask=None, training=False):
def call(self, inputs, mems=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
mems = inputs[1] if len(inputs) > 1 else mems
head_mask = inputs[2] if len(inputs) > 2 else head_mask
assert len(inputs) <= 3, "Too many inputs."
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
assert len(inputs) <= 4, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
mems = inputs.get('mems', mems)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 3, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 4, "Too many inputs."
else:
input_ids = inputs
# the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
# so we transpose here from shape [bsz, len] to shape [len, bsz]
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = tf.transpose(input_ids, perm=(1, 0))
qlen, bsz = shape_list(input_ids)
elif inputs_embeds is not None:
inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
qlen, bsz = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if mems is None:
mems = self.init_mems(input_ids)
qlen, bsz = shape_list(input_ids)
mems = self.init_mems(bsz)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
......@@ -494,6 +506,9 @@ class TFTransfoXLMainLayer(tf.keras.layers.Layer):
else:
head_mask = [None] * self.n_layer
if inputs_embeds is not None:
word_emb = inputs_embeds
else:
word_emb = self.word_emb(input_ids)
mlen = shape_list(mems[0])[0] if mems is not None else 0
......@@ -720,28 +735,33 @@ class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel):
def reset_length(self, tgt_len, ext_len, mem_len):
self.transformer.reset_length(tgt_len, ext_len, mem_len)
def init_mems(self, data):
return self.transformer.init_mems(data)
def init_mems(self, bsz):
return self.transformer.init_mems(bsz)
def call(self, inputs, mems=None, head_mask=None, labels=None, training=False):
def call(self, inputs, mems=None, head_mask=None, inputs_embeds=None, labels=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
mems = inputs[1] if len(inputs) > 1 else mems
head_mask = inputs[2] if len(inputs) > 2 else head_mask
labels = inputs[3] if len(inputs) > 3 else labels
assert len(inputs) <= 4, "Too many inputs."
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
labels = inputs[4] if len(inputs) > 4 else labels
assert len(inputs) <= 5, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
mems = inputs.get('mems', mems)
head_mask = inputs.get('head_mask', head_mask)
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
labels = inputs.get('labels', labels)
assert len(inputs) <= 4, "Too many inputs."
assert len(inputs) <= 5, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None:
bsz, tgt_len = shape_list(input_ids)[:2]
else:
bsz, tgt_len = shape_list(inputs_embeds)[:2]
transformer_outputs = self.transformer([input_ids, mems, head_mask], training=training)
transformer_outputs = self.transformer([input_ids, mems, head_mask, inputs_embeds], training=training)
last_hidden = transformer_outputs[0]
pred_hid = last_hidden[:, -tgt_len:]
......
......@@ -65,6 +65,21 @@ class TFPreTrainedModel(tf.keras.Model):
# Save config in model
self.config = config
def get_input_embeddings(self):
""" Get model's input embeddings
"""
base_model = getattr(self, self.base_model_prefix, self)
if base_model is not self:
return base_model.get_input_embeddings()
else:
raise NotImplementedError
def get_output_embeddings(self):
""" Get model's output embeddings
Return None if the model doesn't have output embeddings
"""
return None # Overwrite for models with output embeddings
def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None):
""" Build a resized Embedding Variable from a provided token Embedding Module.
Increasing the size will add newly initialized vectors at the end
......
......@@ -277,6 +277,9 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
self.prune_heads({int(layer): list(map(int, heads))})
def get_input_embeddings(self):
return self.embeddings
def _resize_token_embeddings(self, new_num_tokens):
raise NotImplementedError
......@@ -288,7 +291,7 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
raise NotImplementedError
def call(self, inputs, attention_mask=None, langs=None, token_type_ids=None,
position_ids=None, lengths=None, cache=None, head_mask=None,
position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None,
training=False): # removed: src_enc=None, src_len=None
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
......@@ -299,7 +302,8 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
lengths = inputs[5] if len(inputs) > 5 else lengths
cache = inputs[6] if len(inputs) > 6 else cache
head_mask = inputs[7] if len(inputs) > 7 else head_mask
assert len(inputs) <= 8, "Too many inputs."
inputs_embeds = inputs[8] if len(inputs) > 8 else inputs_embeds
assert len(inputs) <= 9, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
......@@ -309,16 +313,28 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
lengths = inputs.get('lengths', lengths)
cache = inputs.get('cache', cache)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 8, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 9, "Too many inputs."
else:
input_ids = inputs
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
bs, slen = shape_list(input_ids)
elif inputs_embeds is not None:
bs, slen = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if lengths is None:
if input_ids is not None:
lengths = tf.reduce_sum(tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=tf.int32), axis=1)
else:
lengths = tf.convert_to_tensor([slen]*bs, tf.int32)
# mask = input_ids != self.pad_index
# check inputs
bs, slen = shape_list(input_ids)
# assert shape_list(lengths)[0] == bs
tf.debugging.assert_equal(shape_list(lengths)[0], bs)
# assert lengths.max().item() <= slen
......@@ -358,7 +374,7 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
head_mask = [None] * self.n_layers
# do not recompute cached elements
if cache is not None:
if cache is not None and input_ids is not None:
_slen = slen - cache['slen']
input_ids = input_ids[:, -_slen:]
position_ids = position_ids[:, -_slen:]
......@@ -368,8 +384,10 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
attn_mask = attn_mask[:, -_slen:]
# embeddings
tensor = self.embeddings(input_ids)
tensor = tensor + self.position_embeddings(position_ids)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
tensor = inputs_embeds + self.position_embeddings(position_ids)
if langs is not None and self.use_lang_emb:
tensor = tensor + self.lang_embeddings(langs)
if token_type_ids is not None:
......@@ -641,6 +659,8 @@ class TFXLMWithLMHeadModel(TFXLMPreTrainedModel):
self.transformer = TFXLMMainLayer(config, name='transformer')
self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name='pred_layer_._proj')
def get_output_embeddings(self):
return self.pred_layer.input_embeddings
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
......
......@@ -371,6 +371,9 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
self.layer = [TFXLNetLayer(config, name='layer_._{}'.format(i)) for i in range(config.n_layer)]
self.dropout = tf.keras.layers.Dropout(config.dropout)
def get_input_embeddings(self):
return self.word_embedding
def build(self, input_shape):
initializer = get_initializer(self.initializer_range)
self.mask_emb = self.add_weight(shape=(1, 1, self.d_model),
......@@ -484,7 +487,7 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
return pos_emb
def call(self, inputs, attention_mask=None, mems=None, perm_mask=None, target_mapping=None,
token_type_ids=None, input_mask=None, head_mask=None, training=False):
token_type_ids=None, input_mask=None, head_mask=None, inputs_embeds=None, training=False):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
......@@ -494,7 +497,8 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
token_type_ids = inputs[5] if len(inputs) > 5 else token_type_ids
input_mask = inputs[6] if len(inputs) > 6 else input_mask
head_mask = inputs[7] if len(inputs) > 7 else head_mask
assert len(inputs) <= 8, "Too many inputs."
inputs_embeds = inputs[8] if len(inputs) > 8 else inputs_embeds
assert len(inputs) <= 9, "Too many inputs."
elif isinstance(inputs, dict):
input_ids = inputs.get('input_ids')
attention_mask = inputs.get('attention_mask', attention_mask)
......@@ -504,7 +508,8 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
token_type_ids = inputs.get('token_type_ids', token_type_ids)
input_mask = inputs.get('input_mask', input_mask)
head_mask = inputs.get('head_mask', head_mask)
assert len(inputs) <= 8, "Too many inputs."
inputs_embeds = inputs.get('inputs_embeds', inputs_embeds)
assert len(inputs) <= 9, "Too many inputs."
else:
input_ids = inputs
......@@ -512,14 +517,23 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
# but we want a unified interface in the library with the batch size on the first dimension
# so we move here the first dimension (batch) to the end
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_ids = tf.transpose(input_ids, perm=(1, 0))
qlen, bsz = shape_list(input_ids)[:2]
elif inputs_embeds is not None:
inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2))
qlen, bsz = shape_list(inputs_embeds)[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None
input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None
attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None
perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None
target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None
qlen, bsz = shape_list(input_ids)[:2]
mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0
klen = mlen + qlen
......@@ -570,6 +584,9 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
non_tgt_mask = None
##### Word embeddings and prepare h & g hidden states
if inputs_embeds is not None:
word_emb_k = inputs_embeds
else:
word_emb_k = self.word_embedding(input_ids)
output_h = self.dropout(word_emb_k, training=training)
if target_mapping is not None:
......@@ -854,6 +871,9 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel):
self.transformer = TFXLNetMainLayer(config, name='transformer')
self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name='lm_loss')
def get_output_embeddings(self):
return self.lm_loss.input_embeddings
def call(self, inputs, **kwargs):
transformer_outputs = self.transformer(inputs, **kwargs)
hidden_state = transformer_outputs[0]
......
......@@ -315,6 +315,10 @@ class PreTrainedModel(nn.Module):
model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
if "albert" in pretrained_model_name_or_path and "v2" in pretrained_model_name_or_path:
logger.warning("There is currently an upstream reproducibility issue with ALBERT v2 models. Please see " +
"https://github.com/google-research/google-research/issues/119 for more information.")
config = kwargs.pop('config', None)
state_dict = kwargs.pop('state_dict', None)
cache_dir = kwargs.pop('cache_dir', None)
......
......@@ -23,90 +23,66 @@ from torch.optim.lr_scheduler import LambdaLR
logger = logging.getLogger(__name__)
class ConstantLRSchedule(LambdaLR):
""" Constant learning rate schedule.
def get_constant_schedule(optimizer, last_epoch=-1):
""" Create a schedule with a constant learning rate.
"""
def __init__(self, optimizer, last_epoch=-1):
super(ConstantLRSchedule, self).__init__(optimizer, lambda _: 1.0, last_epoch=last_epoch)
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
class WarmupConstantSchedule(LambdaLR):
""" Linear warmup and then constant.
Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
Keeps multiplicative variable equal to 1. after warmup_steps.
def get_constant_schedule_with_warmup(optimizer, num_warmup_steps, last_epoch=-1):
""" Create a schedule with a constant learning rate preceded by a warmup
period during which the learning rate increases linearly between 0 and 1.
"""
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
self.warmup_steps = warmup_steps
super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
class WarmupLinearSchedule(LambdaLR):
""" Linear warmup and then linear decay.
Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
Linearly decreases the multiplicative variable from 1. to 0. over remaining `t_total - warmup_steps` steps.
"""
def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))
class WarmupCosineSchedule(LambdaLR):
""" Linear warmup and then cosine decay.
Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
Decreases the multiplicative variable from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve.
If `cycles` (default=0.5) is different from default, then the multiplicative variable follows cosine function after warmup.
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
""" Create a schedule with a learning rate that decreases linearly after
linearly increasing during a warmup period.
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
class WarmupCosineWithHardRestartsSchedule(LambdaLR):
""" Linear warmup and then cosine cycles with hard restarts.
Multiplies the learning rate defined in the optimizer by a dynamic variable determined by the current step.
Linearly increases the multiplicative variable from 0. to 1. over `warmup_steps` training steps.
If `cycles` (default=1.) is different from default, learning rate follows `cycles` times a cosine decaying
learning rate (with hard restarts).
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=.5, last_epoch=-1):
""" Create a schedule with a learning rate that decreases following the
values of the cosine function between 0 and `pi * cycles` after a warmup
period during which it increases linearly between 0 and 1.
"""
def __init__(self, optimizer, warmup_steps, t_total, cycles=1., last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(WarmupCosineWithHardRestartsSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1, self.warmup_steps))
# progress after warmup
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1. + math.cos(math.pi * ((float(self.cycles) * progress) % 1.0))))
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0., 0.5 * (1. + math.cos(math.pi * float(num_cycles) * 2. * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=1., last_epoch=-1):
""" Create a schedule with a learning rate that decreases following the
values of the cosine function with several hard restarts, after a warmup
period during which it increases linearly between 0 and 1.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.:
return 0.
return max(0., 0.5 * (1. + math.cos(math.pi * ((float(num_cycles) * progress) % 1.))))
return LambdaLR(optimizer, lr_lambda, last_epoch)
class AdamW(Optimizer):
""" Implements Adam algorithm with weight decay fix.
......
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
if is_torch_available():
from transformers import (AlbertConfig, AlbertModel, AlbertForMaskedLM,
AlbertForSequenceClassification, AlbertForQuestionAnswering,
)
from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
class AlbertModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (AlbertModel, AlbertForMaskedLM) if is_torch_available() else ()
class AlbertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=36,
num_hidden_layers=6,
num_hidden_groups=6,
num_attention_heads=6,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.num_hidden_groups = num_hidden_groups
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size_or_config_json_file=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
num_hidden_groups=self.num_hidden_groups)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(
list(result["loss"].size()),
[])
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertModel(config=config)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForMaskedLM(config=config)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()),
[self.batch_size, self.seq_length, self.vocab_size])
self.check_loss_output(result)
def create_and_check_albert_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = AlbertForQuestionAnswering(config=config)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(
list(result["start_logits"].size()),
[self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["end_logits"].size()),
[self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_albert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = AlbertForSequenceClassification(config)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.num_labels])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, input_mask,
sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = AlbertModelTest.AlbertModelTester(self)
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_albert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = AlbertModel.from_pretrained(model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
......@@ -35,7 +35,7 @@ if is_torch_available():
import torch
import numpy as np
from transformers import (PretrainedConfig, PreTrainedModel,
from transformers import (AdaptiveEmbedding, PretrainedConfig, PreTrainedModel,
BertModel, BertConfig, BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
GPT2LMHeadModel, GPT2Config, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
......@@ -468,9 +468,15 @@ class CommonTestCases:
for model_class in self.all_model_classes:
model = model_class(config)
model.get_input_embeddings()
self.assertIsInstance(
model.get_input_embeddings(),
(torch.nn.Embedding, AdaptiveEmbedding)
)
model.set_input_embeddings(torch.nn.Embedding(10, 10))
model.get_output_embeddings()
x = model.get_output_embeddings()
self.assertTrue(
x is None or isinstance(x, torch.nn.Linear)
)
def test_tie_model_weights(self):
if not self.test_torchscript:
......
......@@ -23,6 +23,7 @@ from transformers import is_torch_available
if is_torch_available():
from transformers import (DistilBertConfig, DistilBertModel, DistilBertForMaskedLM,
DistilBertForTokenClassification,
DistilBertForQuestionAnswering, DistilBertForSequenceClassification)
else:
pytestmark = pytest.mark.skip("Require Torch")
......@@ -180,6 +181,21 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
[self.batch_size, self.num_labels])
self.check_loss_output(result)
def create_and_check_distilbert_for_token_classification(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = DistilBertForTokenClassification(config=config)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()),
[self.batch_size, self.seq_length, self.num_labels])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
......@@ -209,6 +225,10 @@ class DistilBertModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)
# @pytest.mark.slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment