"vscode:/vscode.git/clone" did not exist on "137eb8e663ae948306ec22655cf57495a4493f33"
Unverified Commit 21637d49 authored by Thomas Wolf's avatar Thomas Wolf Committed by GitHub
Browse files

Merge branch 'master' into do_lower_case

parents 7246d3c2 de2696f6
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from transformers import AlbertConfig, is_tf_available
if is_tf_available():
import tensorflow as tf
from transformers.modeling_tf_albert import (TFAlbertModel, TFAlbertForMaskedLM,
TFAlbertForSequenceClassification,
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
class TFAlbertModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (
TFAlbertModel,
TFAlbertForMaskedLM,
TFAlbertForSequenceClassification
) if is_tf_available() else ()
class TFAlbertModelTester(object):
def __init__(self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor(
[self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor(
[self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor(
[self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor(
[self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor(
[self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size_or_config_json_file=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_albert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFAlbertModel(config=config)
# inputs = {'input_ids': input_ids,
# 'attention_mask': input_mask,
# 'token_type_ids': token_type_ids}
# sequence_output, pooled_output = model(**inputs)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
sequence_output, pooled_output = model(inputs)
inputs = [input_ids, input_mask]
sequence_output, pooled_output = model(inputs)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
"pooled_output": pooled_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape),
[self.batch_size, self.seq_length, self.hidden_size])
self.parent.assertListEqual(list(result["pooled_output"].shape), [
self.batch_size, self.hidden_size])
def create_and_check_albert_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFAlbertForMaskedLM(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
prediction_scores, = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape),
[self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_albert_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = TFAlbertForSequenceClassification(config=config)
inputs = {'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids}
logits, = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape),
[self.batch_size, self.num_labels])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, token_type_ids, input_mask,
sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {'input_ids': input_ids,
'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self)
self.config_tester = ConfigTester(
self, config_class=AlbertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_albert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_masked_lm(
*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_albert_for_sequence_classification(
*config_and_inputs)
@pytest.mark.slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
# for model_name in list(TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
for model_name in ['albert-base-uncased']:
model = TFAlbertModel.from_pretrained(
model_name, cache_dir=cache_dir)
shutil.rmtree(cache_dir)
self.assertIsNotNone(model)
if __name__ == "__main__":
unittest.main()
...@@ -131,10 +131,6 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester): ...@@ -131,10 +131,6 @@ class TFBertModelTest(TFCommonTestCases.TFCommonModelTester):
def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): def create_and_check_bert_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = TFBertModel(config=config) model = TFBertModel(config=config)
# inputs = {'input_ids': input_ids,
# 'attention_mask': input_mask,
# 'token_type_ids': token_type_ids}
# sequence_output, pooled_output = model(**inputs)
inputs = {'input_ids': input_ids, inputs = {'input_ids': input_ids,
'attention_mask': input_mask, 'attention_mask': input_mask,
'token_type_ids': token_type_ids} 'token_type_ids': token_type_ids}
......
...@@ -360,6 +360,16 @@ class TFCommonTestCases: ...@@ -360,6 +360,16 @@ class TFCommonTestCases:
# self.assertTrue(models_equal) # self.assertTrue(models_equal)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
x = model.get_output_embeddings()
assert x is None or isinstance(x, tf.keras.layers.Layer)
def test_tie_model_weights(self): def test_tie_model_weights(self):
pass pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
...@@ -401,6 +411,35 @@ class TFCommonTestCases: ...@@ -401,6 +411,35 @@ class TFCommonTestCases:
first, second = model(inputs_dict, training=False)[0], model(inputs_dict, training=False)[0] first, second = model(inputs_dict, training=False)[0], model(inputs_dict, training=False)[0]
self.assertTrue(tf.math.equal(first, second).numpy().all()) self.assertTrue(tf.math.equal(first, second).numpy().all())
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict["input_ids"]
del inputs_dict["input_ids"]
for model_class in self.all_model_classes:
model = model_class(config)
wte = model.get_input_embeddings()
try:
x = wte(input_ids, mode="embedding")
except:
try:
x = wte([input_ids], mode="embedding")
except:
try:
x = wte([input_ids, None, None, None], mode="embedding")
except:
if hasattr(self.model_tester, "embedding_size"):
x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32)
else:
x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32)
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try a few of them.
# We used to fall back to just synthetically creating a dummy tensor of ones:
#
inputs_dict["inputs_embeds"] = x
outputs = model(inputs_dict)
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
"""Creates a random int32 tensor of the shape within the vocab size.""" """Creates a random int32 tensor of the shape within the vocab size."""
......
...@@ -25,8 +25,12 @@ from transformers import is_torch_available ...@@ -25,8 +25,12 @@ from transformers import is_torch_available
if is_torch_available(): if is_torch_available():
import torch import torch
from transformers import (AdamW, ConstantLRSchedule, WarmupConstantSchedule, from transformers import (AdamW,
WarmupCosineSchedule, WarmupCosineWithHardRestartsSchedule, WarmupLinearSchedule) get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup)
else: else:
pytestmark = pytest.mark.skip("Require Torch") pytestmark = pytest.mark.skip("Require Torch")
...@@ -87,59 +91,60 @@ class ScheduleInitTest(unittest.TestCase): ...@@ -87,59 +91,60 @@ class ScheduleInitTest(unittest.TestCase):
self.assertAlmostEqual(a, b, delta=tol) self.assertAlmostEqual(a, b, delta=tol)
def test_constant_scheduler(self): def test_constant_scheduler(self):
scheduler = ConstantLRSchedule(self.optimizer) scheduler = get_constant_schedule(self.optimizer)
lrs = unwrap_schedule(scheduler, self.num_steps) lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [10.] * self.num_steps expected_learning_rates = [10.] * self.num_steps
self.assertEqual(len(lrs[0]), 1) self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = ConstantLRSchedule(self.optimizer) scheduler = get_constant_schedule(self.optimizer)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_constant_scheduler(self): def test_warmup_constant_scheduler(self):
scheduler = WarmupConstantSchedule(self.optimizer, warmup_steps=4) scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
lrs = unwrap_schedule(scheduler, self.num_steps) lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0] expected_learning_rates = [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
self.assertEqual(len(lrs[0]), 1) self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = WarmupConstantSchedule(self.optimizer, warmup_steps=4) scheduler = get_constant_schedule_with_warmup(self.optimizer, num_warmup_steps=4)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_linear_scheduler(self): def test_warmup_linear_scheduler(self):
scheduler = WarmupLinearSchedule(self.optimizer, warmup_steps=2, t_total=10) scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs = unwrap_schedule(scheduler, self.num_steps) lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0] expected_learning_rates = [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0]
self.assertEqual(len(lrs[0]), 1) self.assertEqual(len(lrs[0]), 1)
self.assertListEqual([l[0] for l in lrs], expected_learning_rates) self.assertListEqual([l[0] for l in lrs], expected_learning_rates)
scheduler = WarmupLinearSchedule(self.optimizer, warmup_steps=2, t_total=10) scheduler = get_linear_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_scheduler(self): def test_warmup_cosine_scheduler(self):
scheduler = WarmupCosineSchedule(self.optimizer, warmup_steps=2, t_total=10) scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs = unwrap_schedule(scheduler, self.num_steps) lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0] expected_learning_rates = [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0]
self.assertEqual(len(lrs[0]), 1) self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = WarmupCosineSchedule(self.optimizer, warmup_steps=2, t_total=10) scheduler = get_cosine_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_training_steps=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
def test_warmup_cosine_hard_restart_scheduler(self): def test_warmup_cosine_hard_restart_scheduler(self):
scheduler = WarmupCosineWithHardRestartsSchedule(self.optimizer, warmup_steps=2, cycles=2, t_total=10) scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10)
lrs = unwrap_schedule(scheduler, self.num_steps) lrs = unwrap_schedule(scheduler, self.num_steps)
expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0] expected_learning_rates = [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0]
self.assertEqual(len(lrs[0]), 1) self.assertEqual(len(lrs[0]), 1)
self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2) self.assertListAlmostEqual([l[0] for l in lrs], expected_learning_rates, tol=1e-2)
scheduler = WarmupCosineWithHardRestartsSchedule(self.optimizer, warmup_steps=2, cycles=2, t_total=10) scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(self.optimizer, num_warmup_steps=2, num_cycles=2, num_training_steps=10)
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2]) self.assertListEqual([l[0] for l in lrs], [l[0] for l in lrs_2])
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
# coding=utf-8
# Copyright 2019 Hugging Face inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import unittest
from transformers.tokenization_albert import (AlbertTokenizer, SPIECE_UNDERLINE)
from .tokenization_tests_commons import CommonTestCases
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'fixtures/spiece.model')
class AlbertTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = AlbertTokenizer
def setUp(self):
super(AlbertTokenizationTest, self).setUp()
# We have a SentencePiece fixture for testing
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AlbertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self):
input_text = u"this is a test"
output_text = u"this is a test"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = AlbertTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize(u'This is a test')
self.assertListEqual(tokens, [u'▁this', u'▁is', u'▁a', u'▁test'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289])
tokens = tokenizer.tokenize(u"I was born in 92000, and this is falsé.")
self.assertListEqual(tokens, [u'▁i', u'▁was', u'▁born', u'▁in', u'▁9', u'2000', u',', u'▁and', u'▁this', u'▁is', u'▁fal', u's', u'é', u'.'])
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(back_tokens, ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'])
def test_sequence_builders(self):
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
text = tokenizer.encode("sequence builders")
text_2 = tokenizer.encode("multi-sequence build")
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [tokenizer.sep_token_id]
if __name__ == '__main__':
unittest.main()
...@@ -190,6 +190,27 @@ class CommonTestCases: ...@@ -190,6 +190,27 @@ class CommonTestCases:
self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[0], tokenizer.eos_token_id)
self.assertEqual(tokens[-2], tokenizer.pad_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id)
def test_add_special_tokens(self):
tokenizer = self.get_tokenizer()
input_text, output_text = self.get_input_output_texts()
special_token = "[SPECIAL TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token})
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
assert len(encoded_special_token) == 1
text = " ".join([input_text, special_token, output_text])
encoded = tokenizer.encode(text, add_special_tokens=False)
input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
output_encoded = tokenizer.encode(output_text, add_special_tokens=False)
special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
assert encoded == input_encoded + special_token_id + output_encoded
decoded = tokenizer.decode(encoded, skip_special_tokens=True)
assert special_token not in decoded
def test_required_methods_tokenizer(self): def test_required_methods_tokenizer(self):
tokenizer = self.get_tokenizer() tokenizer = self.get_tokenizer()
input_text, output_text = self.get_input_output_texts() input_text, output_text = self.get_input_output_texts()
......
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for ALBERT model."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from .tokenization_utils import PreTrainedTokenizer
import logging
import unicodedata
import six
import os
from shutil import copyfile
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
PRETRAINED_VOCAB_FILES_MAP = {
'vocab_file':
{
'albert-base-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-spiece.model",
'albert-large-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-spiece.model",
'albert-xlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-spiece.model",
'albert-xxlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-spiece.model",
'albert-base-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-spiece.model",
'albert-large-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-spiece.model",
'albert-xlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-spiece.model",
'albert-xxlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-spiece.model",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'albert-base-v1': 512,
'albert-large-v1': 512,
'albert-xlarge-v1': 512,
'albert-xxlarge-v1': 512,
'albert-base-v2': 512,
'albert-large-v2': 512,
'albert-xlarge-v2': 512,
'albert-xxlarge-v2': 512,
}
SPIECE_UNDERLINE = u'▁'
class AlbertTokenizer(PreTrainedTokenizer):
"""
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file,
do_lower_case=True, remove_space=True, keep_accents=False,
bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]",
pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]>", **kwargs):
super(AlbertTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token,
unk_token=unk_token, sep_token=sep_token,
pad_token=pad_token, cls_token=cls_token,
mask_token=mask_token, **kwargs)
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens
try:
import sentencepiece as spm
except ImportError:
logger.warning("You need to install SentencePiece to use AlbertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece")
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(vocab_file)
@property
def vocab_size(self):
return len(self.sp_model)
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
try:
import sentencepiece as spm
except ImportError:
logger.warning("You need to install SentencePiece to use AlbertTokenizer: https://github.com/google/sentencepiece"
"pip install sentencepiece")
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = ' '.join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if six.PY2 and isinstance(outputs, str):
outputs = outputs.decode('utf-8')
if not self.keep_accents:
outputs = unicodedata.normalize('NFKD', outputs)
outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text, return_unicode=True, sample=False):
""" Tokenize a string.
return_unicode is used only for py2
"""
text = self.preprocess_text(text)
# note(zhiliny): in some systems, sentencepiece only accepts str for py2
if six.PY2 and isinstance(text, unicode):
text = text.encode('utf-8')
if not sample:
pieces = self.sp_model.EncodeAsPieces(text)
else:
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(
piece[:-1].replace(SPIECE_UNDERLINE, ''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
# note(zhiliny): convert back to unicode for py2
if six.PY2 and return_unicode:
ret_pieces = []
for piece in new_pieces:
if isinstance(piece, str):
piece = piece.decode('utf-8')
ret_pieces.append(piece)
new_pieces = ret_pieces
return new_pieces
def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index, return_unicode=True):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
token = self.sp_model.IdToPiece(index)
if six.PY2 and return_unicode and isinstance(token, str):
token = token.decode('utf-8')
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
out_string = ''.join(tokens).replace(SPIECE_UNDERLINE, ' ').strip()
return out_string
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
An ALBERT sequence has the following format:
single sequence: [CLS] X [SEP]
pair of sequences: [CLS] A [SEP] B [SEP]
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError("You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model.")
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
An ALBERT sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory):
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
to a directory.
"""
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
...@@ -27,6 +27,7 @@ from .tokenization_xlnet import XLNetTokenizer ...@@ -27,6 +27,7 @@ from .tokenization_xlnet import XLNetTokenizer
from .tokenization_xlm import XLMTokenizer from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer from .tokenization_roberta import RobertaTokenizer
from .tokenization_distilbert import DistilBertTokenizer from .tokenization_distilbert import DistilBertTokenizer
from .tokenization_camembert import CamembertTokenizer
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
...@@ -41,6 +42,7 @@ class AutoTokenizer(object): ...@@ -41,6 +42,7 @@ class AutoTokenizer(object):
The tokenizer class to instantiate is selected as the first pattern matching The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `camembert`: CamembertTokenizer (CamemBERT model)
- contains `distilbert`: DistilBertTokenizer (DistilBert model) - contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (RoBERTa model) - contains `roberta`: RobertaTokenizer (RoBERTa model)
- contains `bert`: BertTokenizer (Bert model) - contains `bert`: BertTokenizer (Bert model)
...@@ -64,8 +66,9 @@ class AutoTokenizer(object): ...@@ -64,8 +66,9 @@ class AutoTokenizer(object):
The tokenizer class to instantiate is selected as the first pattern matching The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order): in the `pretrained_model_name_or_path` string (in the following order):
- contains `camembert`: CamembertTokenizer (CamemBERT model)
- contains `distilbert`: DistilBertTokenizer (DistilBert model) - contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (XLM model) - contains `roberta`: RobertaTokenizer (RoBERTa model)
- contains `bert`: BertTokenizer (Bert model) - contains `bert`: BertTokenizer (Bert model)
- contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model) - contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
- contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model) - contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
...@@ -103,6 +106,8 @@ class AutoTokenizer(object): ...@@ -103,6 +106,8 @@ class AutoTokenizer(object):
""" """
if 'distilbert' in pretrained_model_name_or_path: if 'distilbert' in pretrained_model_name_or_path:
return DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) return DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'camembert' in pretrained_model_name_or_path:
return CamembertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'roberta' in pretrained_model_name_or_path: elif 'roberta' in pretrained_model_name_or_path:
return RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) return RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'bert' in pretrained_model_name_or_path: elif 'bert' in pretrained_model_name_or_path:
...@@ -121,4 +126,4 @@ class AutoTokenizer(object): ...@@ -121,4 +126,4 @@ class AutoTokenizer(object):
return CTRLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) return CTRLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
raise ValueError("Unrecognized model identifier in {}. Should contains one of " raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', " "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta', 'ctrl'".format(pretrained_model_name_or_path)) "'xlm', 'roberta', 'camembert', 'ctrl'".format(pretrained_model_name_or_path))
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for Camembert model."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import logging
import os
from shutil import copyfile
import sentencepiece as spm
from transformers.tokenization_utils import PreTrainedTokenizer
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': 'sentencepiece.bpe.model'}
PRETRAINED_VOCAB_FILES_MAP = {
'vocab_file':
{
'camembert-base': "https://s3.amazonaws.com/models.huggingface.co/bert/camembert-base-sentencepiece.bpe.model",
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'camembert-base': None,
}
class CamembertTokenizer(PreTrainedTokenizer):
"""
Adapted from RobertaTokenizer and XLNetTokenizer
SentencePiece based tokenizer. Peculiarities:
- requires `SentencePiece <https://github.com/google/sentencepiece>`_
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>",
cls_token="<s>", unk_token="<unk>", pad_token='<pad>', mask_token='<mask>',
additional_special_tokens=['<s>NOTUSED', '<s>NOTUSED'], **kwargs):
super(CamembertTokenizer, self).__init__(max_len=512, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token,
sep_token=sep_token, cls_token=cls_token, pad_token=pad_token,
mask_token=mask_token, additional_special_tokens=additional_special_tokens,
**kwargs)
self.max_len_single_sentence = self.max_len - 2 # take into account special tokens
self.max_len_sentences_pair = self.max_len - 4 # take into account special tokens
self.sp_model = spm.SentencePieceProcessor()
self.sp_model.Load(str(vocab_file))
self.vocab_file = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
self.fairseq_tokens_to_ids = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3}
self.fairseq_offset = len(self.fairseq_tokens_to_ids)
self.fairseq_tokens_to_ids['<mask>'] = len(self.sp_model) + len(self.fairseq_tokens_to_ids)
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens.
A RoBERTa sequence has the following format:
single sequence: <s> X </s>
pair of sequences: <s> A </s></s> B </s>
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False):
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError("You should not supply a second sequence if the provided sequence of "
"ids is already formated with special tokens for the model.")
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A RoBERTa sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
if token_ids_1 is None, only returns the first portion of the mask (0's).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep) * [0] + len(token_ids_1 + sep) * [1]
@property
def vocab_size(self):
return self.fairseq_offset + len(self.sp_model)
def _tokenize(self, text):
return self.sp_model.EncodeAsPieces(text)
def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
return self.fairseq_offset + self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def save_vocabulary(self, save_directory):
""" Save the sentencepiece vocabulary (copy original file) and special tokens file
to a directory.
"""
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
out_vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
...@@ -107,10 +107,10 @@ class GPT2Tokenizer(PreTrainedTokenizer): ...@@ -107,10 +107,10 @@ class GPT2Tokenizer(PreTrainedTokenizer):
""" """
GPT-2 BPE tokenizer. Peculiarities: GPT-2 BPE tokenizer. Peculiarities:
- Byte-level Byte-Pair-Encoding - Byte-level Byte-Pair-Encoding
- Requires a space to start the input string => the encoding methods should be called with the - Requires a space to start the input string => the encoding and tokenize methods should be called with the
``add_prefix_space`` flag set to ``True``. ``add_prefix_space`` flag set to ``True``.
Otherwise, this tokenizer ``encode`` and ``decode`` method will not conserve Otherwise, this tokenizer's ``encode``, ``decode``, and ``tokenize`` methods will not conserve
the absence of a space at the beginning of a string: `tokenizer.decode(tokenizer.encode("Hello")) = " Hello"` the spaces at the beginning of a string: `tokenizer.decode(tokenizer.encode(" Hello")) = "Hello"`
""" """
vocab_files_names = VOCAB_FILES_NAMES vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
...@@ -184,7 +184,7 @@ class GPT2Tokenizer(PreTrainedTokenizer): ...@@ -184,7 +184,7 @@ class GPT2Tokenizer(PreTrainedTokenizer):
""" Tokenize a string. """ Tokenize a string.
Args: Args:
- add_prefix_space (boolean, default False): - add_prefix_space (boolean, default False):
Begin the sentence with at least one space toto get invariance to word order in GPT-2 (and RoBERTa) tokenizers. Begin the sentence with at least one space to get invariance to word order in GPT-2 (and RoBERTa) tokenizers.
""" """
if add_prefix_space: if add_prefix_space:
text = ' ' + text text = ' ' + text
......
...@@ -21,6 +21,7 @@ import os ...@@ -21,6 +21,7 @@ import os
import json import json
import six import six
import copy import copy
import itertools
from io import open from io import open
from .file_utils import cached_path, is_tf_available, is_torch_available from .file_utils import cached_path, is_tf_available, is_torch_available
...@@ -646,9 +647,9 @@ class PreTrainedTokenizer(object): ...@@ -646,9 +647,9 @@ class PreTrainedTokenizer(object):
tokenized_text += [sub_text] tokenized_text += [sub_text]
text_list = tokenized_text text_list = tokenized_text
return sum((self._tokenize(token, **kwargs) if token not \ return list(itertools.chain.from_iterable((self._tokenize(token, **kwargs) if token not \
in self.added_tokens_encoder and token not in self.all_special_tokens \ in self.added_tokens_encoder and token not in self.all_special_tokens \
else [token] for token in tokenized_text), []) else [token] for token in tokenized_text)))
added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
tokenized_text = split_on_tokens(added_tokens, text) tokenized_text = split_on_tokens(added_tokens, text)
...@@ -676,10 +677,6 @@ class PreTrainedTokenizer(object): ...@@ -676,10 +677,6 @@ class PreTrainedTokenizer(object):
ids = [] ids = []
for token in tokens: for token in tokens:
ids.append(self._convert_token_to_id_with_added_voc(token)) ids.append(self._convert_token_to_id_with_added_voc(token))
if len(ids) > self.max_len:
logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
"for this model ({} > {}). Running this sequence through the model will result in "
"indexing errors".format(len(ids), self.max_len))
return ids return ids
def _convert_token_to_id_with_added_voc(self, token): def _convert_token_to_id_with_added_voc(self, token):
...@@ -882,6 +879,11 @@ class PreTrainedTokenizer(object): ...@@ -882,6 +879,11 @@ class PreTrainedTokenizer(object):
encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"][:max_length] encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"][:max_length]
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"][:max_length] encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"][:max_length]
if max_length is None and len(encoded_inputs["input_ids"]) > self.max_len:
logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
"for this model ({} > {}). Running this sequence through the model will result in "
"indexing errors".format(len(ids), self.max_len))
return encoded_inputs return encoded_inputs
def truncate_sequences(self, ids, pair_ids=None, num_tokens_to_remove=0, truncation_strategy='longest_first', stride=0): def truncate_sequences(self, ids, pair_ids=None, num_tokens_to_remove=0, truncation_strategy='longest_first', stride=0):
...@@ -1060,7 +1062,7 @@ class PreTrainedTokenizer(object): ...@@ -1060,7 +1062,7 @@ class PreTrainedTokenizer(object):
class attributes (cls_token, unk_token...). class attributes (cls_token, unk_token...).
""" """
all_toks = self.all_special_tokens all_toks = self.all_special_tokens
all_ids = list(self._convert_token_to_id(t) for t in all_toks) all_ids = self.convert_tokens_to_ids(all_toks)
return all_ids return all_ids
@staticmethod @staticmethod
......
...@@ -185,9 +185,9 @@ class XLNetTokenizer(PreTrainedTokenizer): ...@@ -185,9 +185,9 @@ class XLNetTokenizer(PreTrainedTokenizer):
""" """
Build model inputs from a sequence or a pair of sequence for sequence classification tasks Build model inputs from a sequence or a pair of sequence for sequence classification tasks
by concatenating and adding special tokens. by concatenating and adding special tokens.
A RoBERTa sequence has the following format: An XLNet sequence has the following format:
single sequence: <s> X </s> single sequence: X <sep> <cls>
pair of sequences: <s> A </s></s> B </s> pair of sequences: A <sep> B <sep> <cls>
""" """
sep = [self.sep_token_id] sep = [self.sep_token_id]
cls = [self.cls_token_id] cls = [self.cls_token_id]
...@@ -224,7 +224,7 @@ class XLNetTokenizer(PreTrainedTokenizer): ...@@ -224,7 +224,7 @@ class XLNetTokenizer(PreTrainedTokenizer):
def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None):
""" """
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
A BERT sequence pair mask has the following format: An XLNet sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2
| first sequence | second sequence | CLS segment ID | first sequence | second sequence | CLS segment ID
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment