Unverified Commit 208df208 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Flax] Adapt examples to be able to use eval_steps and save_steps (#12543)



* fix_torch_device_generate_test

* remove @

* up

* up

* correct

* upload
Co-authored-by: default avatarPatrick von Platen <patrick@huggingface.co>
parent 2870fd19
......@@ -141,6 +141,8 @@ Next we can run the example script to pretrain the model:
--adam_beta1="0.9" \
--adam_beta2="0.98" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
......@@ -234,6 +236,8 @@ Next we can run the example script to pretrain the model:
--overwrite_output_dir \
--num_train_epochs="20" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
......@@ -370,6 +374,8 @@ Next we can run the example script to pretrain the model:
--overwrite_output_dir \
--num_train_epochs="10" \
--logging_steps="500" \
--save_steps="2500" \
--eval_steps="2500" \
--push_to_hub
```
......
......@@ -587,6 +587,7 @@ def main():
train_metrics = []
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
eval_metrics = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
......@@ -599,7 +600,6 @@ def main():
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
try:
......@@ -608,7 +608,7 @@ def main():
eval_metrics["perplexity"] = float("inf")
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
desc = f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity: {eval_metrics['perplexity']})"
epochs.write(desc)
epochs.desc = desc
......@@ -617,6 +617,7 @@ def main():
cur_step = epoch * (len(train_dataset) // train_batch_size)
write_eval_metric(summary_writer, eval_metrics, cur_step)
if cur_step % training_args.save_steps == 0 and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(unreplicate(state.params))
......@@ -624,7 +625,7 @@ def main():
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
commit_message=f"Saving weights and logs of step {cur_step}",
)
......
......@@ -621,6 +621,7 @@ if __name__ == "__main__":
train_metrics = []
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
num_eval_samples = len(tokenized_datasets["validation"])
eval_samples_idx = jnp.arange(num_eval_samples)
......@@ -643,15 +644,14 @@ if __name__ == "__main__":
eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
epochs.desc = (
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
)
epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(tokenized_datasets["train"]) // train_batch_size)
write_eval_metric(summary_writer, eval_metrics, cur_step)
if cur_step % training_args.save_steps == 0 and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
......@@ -659,5 +659,5 @@ if __name__ == "__main__":
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
commit_message=f"Saving weights and logs of step {cur_step}",
)
......@@ -737,6 +737,7 @@ if __name__ == "__main__":
train_metrics = []
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
num_eval_samples = len(tokenized_datasets["validation"])
eval_samples_idx = jnp.arange(num_eval_samples)
......@@ -757,16 +758,20 @@ if __name__ == "__main__":
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
# Update progress bar
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
)
epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})")
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(tokenized_datasets["train"]) // train_batch_size)
write_eval_metric(summary_writer, eval_metrics, cur_step)
if cur_step % training_args.save_steps == 0 and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(training_args.output_dir, params=params, push_to_hub=training_args.push_to_hub)
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {cur_step}",
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment