Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1e847b40
Unverified
Commit
1e847b40
authored
Dec 28, 2021
by
Patrick von Platen
Committed by
GitHub
Dec 28, 2021
Browse files
[WavLM] give model for precision (#14958)
parent
1c121916
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
2 deletions
+28
-2
tests/test_modeling_wavlm.py
tests/test_modeling_wavlm.py
+28
-2
No files found.
tests/test_modeling_wavlm.py
View file @
1e847b40
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
# limitations under the License.
# limitations under the License.
""" Testing suite for the PyTorch WavLM model. """
""" Testing suite for the PyTorch WavLM model. """
import
copy
import
math
import
math
import
unittest
import
unittest
...
@@ -451,6 +452,31 @@ class WavLMModelTest(ModelTesterMixin, unittest.TestCase):
...
@@ -451,6 +452,31 @@ class WavLMModelTest(ModelTesterMixin, unittest.TestCase):
if
hasattr
(
module
,
"masked_spec_embed"
)
and
module
.
masked_spec_embed
is
not
None
:
if
hasattr
(
module
,
"masked_spec_embed"
)
and
module
.
masked_spec_embed
is
not
None
:
module
.
masked_spec_embed
.
data
.
fill_
(
3
)
module
.
masked_spec_embed
.
data
.
fill_
(
3
)
# overwrite from test_modeling_common
# as WavLM is not very precise
def
test_feed_forward_chunking
(
self
):
(
original_config
,
inputs_dict
,
)
=
self
.
model_tester
.
prepare_config_and_inputs_for_common
()
for
model_class
in
self
.
all_model_classes
:
torch
.
manual_seed
(
0
)
config
=
copy
.
deepcopy
(
original_config
)
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
hidden_states_no_chunk
=
model
(
**
self
.
_prepare_for_class
(
inputs_dict
,
model_class
))[
0
]
torch
.
manual_seed
(
0
)
config
.
chunk_size_feed_forward
=
1
model
=
model_class
(
config
)
model
.
to
(
torch_device
)
model
.
eval
()
hidden_states_with_chunk
=
model
(
**
self
.
_prepare_for_class
(
inputs_dict
,
model_class
))[
0
]
self
.
assertTrue
(
torch
.
allclose
(
hidden_states_no_chunk
,
hidden_states_with_chunk
,
atol
=
1e-2
))
@
slow
@
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
model
=
WavLMModel
.
from_pretrained
(
"microsoft/wavlm-base-plus"
)
model
=
WavLMModel
.
from_pretrained
(
"microsoft/wavlm-base-plus"
)
...
@@ -497,7 +523,7 @@ class WavLMModelIntegrationTest(unittest.TestCase):
...
@@ -497,7 +523,7 @@ class WavLMModelIntegrationTest(unittest.TestCase):
[[[
0.0577
,
0.1161
],
[
0.0579
,
0.1165
]],
[[
0.0199
,
0.1237
],
[
0.0059
,
0.0605
]]]
[[[
0.0577
,
0.1161
],
[
0.0579
,
0.1165
]],
[[
0.0199
,
0.1237
],
[
0.0059
,
0.0605
]]]
)
)
# TODO: update the tolerance after the CI moves to torch 1.10
# TODO: update the tolerance after the CI moves to torch 1.10
self
.
assertTrue
(
torch
.
allclose
(
hidden_states_slice
,
EXPECTED_HIDDEN_STATES_SLICE
,
atol
=
1
e-2
))
self
.
assertTrue
(
torch
.
allclose
(
hidden_states_slice
,
EXPECTED_HIDDEN_STATES_SLICE
,
atol
=
5
e-2
))
def
test_inference_large
(
self
):
def
test_inference_large
(
self
):
model
=
WavLMModel
.
from_pretrained
(
"microsoft/wavlm-large"
).
to
(
torch_device
)
model
=
WavLMModel
.
from_pretrained
(
"microsoft/wavlm-large"
).
to
(
torch_device
)
...
@@ -520,7 +546,7 @@ class WavLMModelIntegrationTest(unittest.TestCase):
...
@@ -520,7 +546,7 @@ class WavLMModelIntegrationTest(unittest.TestCase):
EXPECTED_HIDDEN_STATES_SLICE
=
torch
.
tensor
(
EXPECTED_HIDDEN_STATES_SLICE
=
torch
.
tensor
(
[[[
0.1612
,
0.4314
],
[
0.1690
,
0.4344
]],
[[
0.2086
,
0.1396
],
[
0.3014
,
0.0903
]]]
[[[
0.1612
,
0.4314
],
[
0.1690
,
0.4344
]],
[[
0.2086
,
0.1396
],
[
0.3014
,
0.0903
]]]
)
)
self
.
assertTrue
(
torch
.
allclose
(
hidden_states_slice
,
EXPECTED_HIDDEN_STATES_SLICE
,
rtol
=
1
e-2
))
self
.
assertTrue
(
torch
.
allclose
(
hidden_states_slice
,
EXPECTED_HIDDEN_STATES_SLICE
,
rtol
=
5
e-2
))
def
test_inference_diarization
(
self
):
def
test_inference_diarization
(
self
):
model
=
WavLMForAudioFrameClassification
.
from_pretrained
(
"microsoft/wavlm-base-plus-sd"
).
to
(
torch_device
)
model
=
WavLMForAudioFrameClassification
.
from_pretrained
(
"microsoft/wavlm-base-plus-sd"
).
to
(
torch_device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment