Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1e5b31c3
Commit
1e5b31c3
authored
Oct 30, 2019
by
Lysandre
Committed by
Lysandre Debut
Nov 26, 2019
Browse files
Several fixes and improvements
parent
ee20201d
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
19 additions
and
19 deletions
+19
-19
transformers/modeling_albert.py
transformers/modeling_albert.py
+18
-18
transformers/tests/fixtures/spiece.model
transformers/tests/fixtures/spiece.model
+0
-0
transformers/tokenization_albert.py
transformers/tokenization_albert.py
+1
-1
No files found.
transformers/modeling_albert.py
View file @
1e5b31c3
...
@@ -7,6 +7,7 @@ import torch.nn as nn
...
@@ -7,6 +7,7 @@ import torch.nn as nn
from
torch.nn
import
CrossEntropyLoss
from
torch.nn
import
CrossEntropyLoss
from
transformers.configuration_albert
import
AlbertConfig
from
transformers.configuration_albert
import
AlbertConfig
from
transformers.modeling_bert
import
BertEmbeddings
,
BertModel
,
BertSelfAttention
,
prune_linear_layer
,
gelu_new
from
transformers.modeling_bert
import
BertEmbeddings
,
BertModel
,
BertSelfAttention
,
prune_linear_layer
,
gelu_new
from
transformers.modeling_utils
import
PreTrainedModel
from
.file_utils
import
add_start_docstrings
from
.file_utils
import
add_start_docstrings
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
...
@@ -37,18 +38,17 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
...
@@ -37,18 +38,17 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
print
(
name
)
print
(
name
)
for
name
,
array
in
zip
(
names
,
arrays
):
for
name
,
array
in
zip
(
names
,
arrays
):
print
(
name
)
original_name
=
name
og
=
name
name
=
name
.
replace
(
"ffn_1"
,
"ffn"
)
name
=
name
.
replace
(
"ffn_1"
,
"ffn"
)
name
=
name
.
replace
(
"ffn/intermediate/output"
,
"ffn_output"
)
name
=
name
.
replace
(
"ffn/intermediate/output"
,
"ffn_output"
)
name
=
name
.
replace
(
"attention_1"
,
"attention"
)
name
=
name
.
replace
(
"attention_1"
,
"attention"
)
name
=
name
.
replace
(
"cls/predictions/transform"
,
"predictions"
)
name
=
name
.
replace
(
"cls/predictions"
,
"predictions"
)
name
=
name
.
replace
(
"LayerNorm_1"
,
"attention/LayerNorm"
)
name
=
name
.
replace
(
"transform/"
,
""
)
name
=
name
.
replace
(
"LayerNorm_1"
,
"full_layer_layer_norm"
)
name
=
name
.
replace
(
"LayerNorm"
,
"attention/LayerNorm"
)
name
=
name
.
replace
(
"inner_group_"
,
"albert_layers/"
)
name
=
name
.
replace
(
"inner_group_"
,
"albert_layers/"
)
name
=
name
.
replace
(
"group_"
,
"albert_layer_groups/"
)
name
=
name
.
replace
(
"group_"
,
"albert_layer_groups/"
)
name
=
name
.
split
(
'/'
)
name
=
name
.
split
(
'/'
)
print
(
name
)
pointer
=
model
pointer
=
model
for
m_name
in
name
:
for
m_name
in
name
:
if
re
.
fullmatch
(
r
'[A-Za-z]+_\d+'
,
m_name
):
if
re
.
fullmatch
(
r
'[A-Za-z]+_\d+'
,
m_name
):
...
@@ -78,13 +78,12 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
...
@@ -78,13 +78,12 @@ def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
pointer
=
getattr
(
pointer
,
'weight'
)
pointer
=
getattr
(
pointer
,
'weight'
)
elif
m_name
==
'kernel'
:
elif
m_name
==
'kernel'
:
array
=
np
.
transpose
(
array
)
array
=
np
.
transpose
(
array
)
print
(
"transposed"
)
try
:
try
:
assert
pointer
.
shape
==
array
.
shape
assert
pointer
.
shape
==
array
.
shape
except
AssertionError
as
e
:
except
AssertionError
as
e
:
e
.
args
+=
(
pointer
.
shape
,
array
.
shape
)
e
.
args
+=
(
pointer
.
shape
,
array
.
shape
)
raise
raise
print
(
"Initialize PyTorch weight {} from {}"
.
format
(
name
,
o
g
))
print
(
"Initialize PyTorch weight {} from {}"
.
format
(
name
,
o
riginal_name
))
pointer
.
data
=
torch
.
from_numpy
(
array
)
pointer
.
data
=
torch
.
from_numpy
(
array
)
return
model
return
model
...
@@ -177,9 +176,9 @@ class AlbertAttention(BertSelfAttention):
...
@@ -177,9 +176,9 @@ class AlbertAttention(BertSelfAttention):
b
=
self
.
dense
.
bias
b
=
self
.
dense
.
bias
projected_context_layer
=
torch
.
einsum
(
"bfnd,ndh->bfh"
,
context_layer
,
w
)
+
b
projected_context_layer
=
torch
.
einsum
(
"bfnd,ndh->bfh"
,
context_layer
,
w
)
+
b
projected_context_layer
=
self
.
dropout
(
projected_context_layer
)
projected_context_layer
_dropout
=
self
.
dropout
(
projected_context_layer
)
layernormed_context_layer
=
self
.
LayerNorm
(
input_ids
+
projected_context_layer
)
layernormed_context_layer
=
self
.
LayerNorm
(
input_ids
+
projected_context_layer
_dropout
)
return
layernormed_context_layer
,
projected_context_layer
,
reshaped_context_layer
,
context_layer
,
attention_scores
,
attention_probs
,
attention_mask
return
layernormed_context_layer
class
AlbertLayer
(
nn
.
Module
):
class
AlbertLayer
(
nn
.
Module
):
...
@@ -187,17 +186,17 @@ class AlbertLayer(nn.Module):
...
@@ -187,17 +186,17 @@ class AlbertLayer(nn.Module):
super
(
AlbertLayer
,
self
).
__init__
()
super
(
AlbertLayer
,
self
).
__init__
()
self
.
config
=
config
self
.
config
=
config
self
.
LayerN
orm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
config
.
layer_norm_eps
)
self
.
full_layer_layer_n
orm
=
nn
.
LayerNorm
(
config
.
hidden_size
,
eps
=
config
.
layer_norm_eps
)
self
.
attention
=
AlbertAttention
(
config
)
self
.
attention
=
AlbertAttention
(
config
)
self
.
ffn
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
intermediate_size
)
self
.
ffn
=
nn
.
Linear
(
config
.
hidden_size
,
config
.
intermediate_size
)
self
.
ffn_output
=
nn
.
Linear
(
config
.
intermediate_size
,
config
.
hidden_size
)
self
.
ffn_output
=
nn
.
Linear
(
config
.
intermediate_size
,
config
.
hidden_size
)
def
forward
(
self
,
hidden_states
,
attention_mask
=
None
,
head_mask
=
None
):
def
forward
(
self
,
hidden_states
,
attention_mask
=
None
,
head_mask
=
None
):
attention_output
=
self
.
attention
(
hidden_states
,
attention_mask
)
[
0
]
attention_output
=
self
.
attention
(
hidden_states
,
attention_mask
)
ffn_output
=
self
.
ffn
(
attention_output
)
ffn_output
=
self
.
ffn
(
attention_output
)
ffn_output
=
gelu_new
(
ffn_output
)
ffn_output
=
gelu_new
(
ffn_output
)
ffn_output
=
self
.
ffn_output
(
ffn_output
)
ffn_output
=
self
.
ffn_output
(
ffn_output
)
hidden_states
=
self
.
LayerN
orm
(
ffn_output
+
attention_output
)
hidden_states
=
self
.
full_layer_layer_n
orm
(
ffn_output
+
attention_output
)
return
hidden_states
return
hidden_states
...
@@ -352,16 +351,17 @@ class AlbertModel(BertModel):
...
@@ -352,16 +351,17 @@ class AlbertModel(BertModel):
encoder_outputs
=
self
.
encoder
(
embedding_output
,
encoder_outputs
=
self
.
encoder
(
embedding_output
,
extended_attention_mask
,
extended_attention_mask
,
head_mask
=
head_mask
)
head_mask
=
head_mask
)
sequence_output
=
encoder_outputs
[
0
]
sequence_output
=
encoder_outputs
[
0
]
pooled_output
=
self
.
pooler_activation
(
self
.
pooler
(
sequence_output
[:,
0
]))
pooled_output
=
self
.
pooler_activation
(
self
.
pooler
(
sequence_output
[:,
0
]))
outputs
=
(
sequence_output
,
pooled_output
,
)
+
encoder_outputs
[
1
:]
# add hidden_states and attentions if they are here
outputs
=
(
sequence_output
,
pooled_output
)
+
encoder_outputs
[
1
:]
# add hidden_states and attentions if they are here
return
outputs
return
outputs
@
add_start_docstrings
(
"Bert Model with a `language modeling` head on top."
,
ALBERT_START_DOCSTRING
,
ALBERT_INPUTS_DOCSTRING
)
@
add_start_docstrings
(
"Bert Model with a `language modeling` head on top."
,
ALBERT_START_DOCSTRING
,
ALBERT_INPUTS_DOCSTRING
)
class
AlbertForMaskedLM
(
nn
.
Module
):
class
AlbertForMaskedLM
(
PreTrainedModel
):
r
"""
r
"""
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Labels for computing the masked language modeling loss.
...
@@ -384,7 +384,7 @@ class AlbertForMaskedLM(nn.Module):
...
@@ -384,7 +384,7 @@ class AlbertForMaskedLM(nn.Module):
"""
"""
def
__init__
(
self
,
config
):
def
__init__
(
self
,
config
):
super
(
AlbertForMaskedLM
,
self
).
__init__
()
super
(
AlbertForMaskedLM
,
self
).
__init__
(
config
)
self
.
config
=
config
self
.
config
=
config
self
.
bert
=
AlbertModel
(
config
)
self
.
bert
=
AlbertModel
(
config
)
...
...
transformers/tests/fixtures/
30k-clean
.model
→
transformers/tests/fixtures/
spiece
.model
View file @
1e5b31c3
File moved
transformers/tokenization_albert.py
View file @
1e5b31c3
...
@@ -8,7 +8,7 @@ from shutil import copyfile
...
@@ -8,7 +8,7 @@ from shutil import copyfile
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
VOCAB_FILES_NAMES
=
{
'vocab_file'
:
'
30k-clean
.model'
}
VOCAB_FILES_NAMES
=
{
'vocab_file'
:
'
spiece
.model'
}
SPIECE_UNDERLINE
=
u
'▁'
SPIECE_UNDERLINE
=
u
'▁'
class
AlbertTokenizer
(
PreTrainedTokenizer
):
class
AlbertTokenizer
(
PreTrainedTokenizer
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment