Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1c933358
"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "4c4dd093de8891e3f50f74399bcc15a13a4d5101"
Commit
1c933358
authored
Jan 06, 2020
by
thomwolf
Browse files
formating
parent
e25b6fe3
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
358 additions
and
240 deletions
+358
-240
examples/hans/hans_processors.py
examples/hans/hans_processors.py
+62
-51
examples/hans/test_hans.py
examples/hans/test_hans.py
+291
-186
examples/hans/utils_hans.py
examples/hans/utils_hans.py
+5
-3
No files found.
examples/hans/hans_processors.py
View file @
1c933358
...
@@ -18,8 +18,9 @@
...
@@ -18,8 +18,9 @@
import
logging
import
logging
import
os
import
os
from
utils_hans
import
DataProcessor
,
InputExample
,
InputFeatures
from
transformers.file_utils
import
is_tf_available
from
transformers.file_utils
import
is_tf_available
from
utils_hans
import
DataProcessor
,
InputExample
,
InputFeatures
if
is_tf_available
():
if
is_tf_available
():
import
tensorflow
as
tf
import
tensorflow
as
tf
...
@@ -27,15 +28,18 @@ if is_tf_available():
...
@@ -27,15 +28,18 @@ if is_tf_available():
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
def
hans_convert_examples_to_features
(
examples
,
tokenizer
,
def
hans_convert_examples_to_features
(
max_length
=
512
,
examples
,
task
=
None
,
tokenizer
,
label_list
=
None
,
max_length
=
512
,
output_mode
=
None
,
task
=
None
,
pad_on_left
=
False
,
label_list
=
None
,
pad_token
=
0
,
output_mode
=
None
,
pad_token_segment_id
=
0
,
pad_on_left
=
False
,
mask_padding_with_zero
=
True
):
pad_token
=
0
,
pad_token_segment_id
=
0
,
mask_padding_with_zero
=
True
,
):
"""
"""
Loads a data file into a list of ``InputFeatures``
Loads a data file into a list of ``InputFeatures``
...
@@ -82,12 +86,7 @@ def hans_convert_examples_to_features(examples, tokenizer,
...
@@ -82,12 +86,7 @@ def hans_convert_examples_to_features(examples, tokenizer,
example
=
processor
.
get_example_from_tensor_dict
(
example
)
example
=
processor
.
get_example_from_tensor_dict
(
example
)
example
=
processor
.
tfds_map
(
example
)
example
=
processor
.
tfds_map
(
example
)
inputs
=
tokenizer
.
encode_plus
(
inputs
=
tokenizer
.
encode_plus
(
example
.
text_a
,
example
.
text_b
,
add_special_tokens
=
True
,
max_length
=
max_length
,)
example
.
text_a
,
example
.
text_b
,
add_special_tokens
=
True
,
max_length
=
max_length
,
)
input_ids
,
token_type_ids
=
inputs
[
"input_ids"
],
inputs
[
"token_type_ids"
]
input_ids
,
token_type_ids
=
inputs
[
"input_ids"
],
inputs
[
"token_type_ids"
]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# The mask has 1 for real tokens and 0 for padding tokens. Only real
...
@@ -106,8 +105,12 @@ def hans_convert_examples_to_features(examples, tokenizer,
...
@@ -106,8 +105,12 @@ def hans_convert_examples_to_features(examples, tokenizer,
token_type_ids
=
token_type_ids
+
([
pad_token_segment_id
]
*
padding_length
)
token_type_ids
=
token_type_ids
+
([
pad_token_segment_id
]
*
padding_length
)
assert
len
(
input_ids
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
len
(
input_ids
),
max_length
)
assert
len
(
input_ids
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
len
(
input_ids
),
max_length
)
assert
len
(
attention_mask
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
len
(
attention_mask
),
max_length
)
assert
len
(
attention_mask
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
assert
len
(
token_type_ids
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
len
(
token_type_ids
),
max_length
)
len
(
attention_mask
),
max_length
)
assert
len
(
token_type_ids
)
==
max_length
,
"Error with input length {} vs {}"
.
format
(
len
(
token_type_ids
),
max_length
)
if
output_mode
==
"classification"
:
if
output_mode
==
"classification"
:
label
=
label_map
[
example
.
label
]
if
example
.
label
in
label_map
else
0
label
=
label_map
[
example
.
label
]
if
example
.
label
in
label_map
else
0
...
@@ -128,28 +131,40 @@ def hans_convert_examples_to_features(examples, tokenizer,
...
@@ -128,28 +131,40 @@ def hans_convert_examples_to_features(examples, tokenizer,
logger
.
info
(
"label: %s (id = %d)"
%
(
example
.
label
,
label
))
logger
.
info
(
"label: %s (id = %d)"
%
(
example
.
label
,
label
))
features
.
append
(
features
.
append
(
InputFeatures
(
input_ids
=
input_ids
,
InputFeatures
(
attention_mask
=
attention_mask
,
input_ids
=
input_ids
,
token_type_ids
=
token_type_ids
,
attention_mask
=
attention_mask
,
label
=
label
,
pairID
=
pairID
))
token_type_ids
=
token_type_ids
,
label
=
label
,
pairID
=
pairID
,
)
)
if
is_tf_available
()
and
is_tf_dataset
:
if
is_tf_available
()
and
is_tf_dataset
:
def
gen
():
def
gen
():
for
ex
in
features
:
for
ex
in
features
:
yield
({
'input_ids'
:
ex
.
input_ids
,
yield
(
'attention_mask'
:
ex
.
attention_mask
,
{
'token_type_ids'
:
ex
.
token_type_ids
},
"input_ids"
:
ex
.
input_ids
,
ex
.
label
)
"attention_mask"
:
ex
.
attention_mask
,
"token_type_ids"
:
ex
.
token_type_ids
,
return
tf
.
data
.
Dataset
.
from_generator
(
gen
,
},
({
'input_ids'
:
tf
.
int32
,
ex
.
label
,
'attention_mask'
:
tf
.
int32
,
)
'token_type_ids'
:
tf
.
int32
},
tf
.
int64
),
return
tf
.
data
.
Dataset
.
from_generator
(
({
'input_ids'
:
tf
.
TensorShape
([
None
]),
gen
,
'attention_mask'
:
tf
.
TensorShape
([
None
]),
({
"input_ids"
:
tf
.
int32
,
"attention_mask"
:
tf
.
int32
,
"token_type_ids"
:
tf
.
int32
},
tf
.
int64
),
'token_type_ids'
:
tf
.
TensorShape
([
None
])},
(
tf
.
TensorShape
([])))
{
"input_ids"
:
tf
.
TensorShape
([
None
]),
"attention_mask"
:
tf
.
TensorShape
([
None
]),
"token_type_ids"
:
tf
.
TensorShape
([
None
]),
},
tf
.
TensorShape
([]),
),
)
return
features
return
features
...
@@ -159,21 +174,20 @@ class HansProcessor(DataProcessor):
...
@@ -159,21 +174,20 @@ class HansProcessor(DataProcessor):
def
get_example_from_tensor_dict
(
self
,
tensor_dict
):
def
get_example_from_tensor_dict
(
self
,
tensor_dict
):
"""See base class."""
"""See base class."""
return
InputExample
(
tensor_dict
[
'idx'
].
numpy
(),
return
InputExample
(
tensor_dict
[
'premise'
].
numpy
().
decode
(
'utf-8'
),
tensor_dict
[
"idx"
].
numpy
(),
tensor_dict
[
'hypothesis'
].
numpy
().
decode
(
'utf-8'
),
tensor_dict
[
"premise"
].
numpy
().
decode
(
"utf-8"
),
str
(
tensor_dict
[
'label'
].
numpy
()))
tensor_dict
[
"hypothesis"
].
numpy
().
decode
(
"utf-8"
),
str
(
tensor_dict
[
"label"
].
numpy
()),
)
def
get_train_examples
(
self
,
data_dir
):
def
get_train_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
return
self
.
_create_examples
(
return
self
.
_create_examples
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"heuristics_train_set.txt"
)),
"train"
)
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"heuristics_train_set.txt"
)),
"train"
)
def
get_dev_examples
(
self
,
data_dir
):
def
get_dev_examples
(
self
,
data_dir
):
"""See base class."""
"""See base class."""
return
self
.
_create_examples
(
return
self
.
_create_examples
(
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"heuristics_evaluation_set.txt"
)),
"dev"
)
self
.
_read_tsv
(
os
.
path
.
join
(
data_dir
,
"heuristics_evaluation_set.txt"
)),
"dev"
)
def
get_labels
(
self
):
def
get_labels
(
self
):
"""See base class."""
"""See base class."""
...
@@ -188,14 +202,12 @@ class HansProcessor(DataProcessor):
...
@@ -188,14 +202,12 @@ class HansProcessor(DataProcessor):
guid
=
"%s-%s"
%
(
set_type
,
line
[
0
])
guid
=
"%s-%s"
%
(
set_type
,
line
[
0
])
text_a
=
line
[
5
]
text_a
=
line
[
5
]
text_b
=
line
[
6
]
text_b
=
line
[
6
]
pairID
=
line
[
7
][
2
:]
if
line
[
7
].
startswith
(
'ex'
)
else
line
[
7
]
pairID
=
line
[
7
][
2
:]
if
line
[
7
].
startswith
(
"ex"
)
else
line
[
7
]
label
=
line
[
-
1
]
label
=
line
[
-
1
]
examples
.
append
(
examples
.
append
(
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
pairID
=
pairID
))
InputExample
(
guid
=
guid
,
text_a
=
text_a
,
text_b
=
text_b
,
label
=
label
,
pairID
=
pairID
))
return
examples
return
examples
glue_tasks_num_labels
=
{
glue_tasks_num_labels
=
{
"hans"
:
3
,
"hans"
:
3
,
}
}
...
@@ -207,4 +219,3 @@ glue_processors = {
...
@@ -207,4 +219,3 @@ glue_processors = {
glue_output_modes
=
{
glue_output_modes
=
{
"hans"
:
"classification"
,
"hans"
:
"classification"
,
}
}
examples/hans/test_hans.py
View file @
1c933358
...
@@ -19,60 +19,72 @@ from __future__ import absolute_import, division, print_function
...
@@ -19,60 +19,72 @@ from __future__ import absolute_import, division, print_function
import
argparse
import
argparse
import
glob
import
glob
import
json
import
logging
import
logging
import
os
import
os
import
random
import
random
import
json
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
from
torch.utils.data
import
(
DataLoader
,
RandomSampler
,
SequentialSampler
,
from
torch.utils.data
import
DataLoader
,
RandomSampler
,
SequentialSampler
,
TensorDataset
TensorDataset
)
from
torch.utils.data.distributed
import
DistributedSampler
from
torch.utils.data.distributed
import
DistributedSampler
from
tqdm
import
tqdm
,
trange
from
hans_processors
import
glue_output_modes
as
output_modes
from
hans_processors
import
glue_processors
as
processors
from
hans_processors
import
hans_convert_examples_to_features
as
convert_examples_to_features
from
transformers
import
(
WEIGHTS_NAME
,
AdamW
,
AlbertConfig
,
AlbertForSequenceClassification
,
AlbertTokenizer
,
BertConfig
,
BertForSequenceClassification
,
BertTokenizer
,
DistilBertConfig
,
DistilBertForSequenceClassification
,
DistilBertTokenizer
,
RobertaConfig
,
RobertaForSequenceClassification
,
RobertaTokenizer
,
XLMConfig
,
XLMForSequenceClassification
,
XLMTokenizer
,
XLNetConfig
,
XLNetForSequenceClassification
,
XLNetTokenizer
,
get_linear_schedule_with_warmup
,
)
from
transformers
import
glue_compute_metrics
as
compute_metrics
try
:
try
:
from
torch.utils.tensorboard
import
SummaryWriter
from
torch.utils.tensorboard
import
SummaryWriter
except
:
except
:
from
tensorboardX
import
SummaryWriter
from
tensorboardX
import
SummaryWriter
from
tqdm
import
tqdm
,
trange
from
transformers
import
(
WEIGHTS_NAME
,
BertConfig
,
BertForSequenceClassification
,
BertTokenizer
,
RobertaConfig
,
RobertaForSequenceClassification
,
RobertaTokenizer
,
XLMConfig
,
XLMForSequenceClassification
,
XLMTokenizer
,
XLNetConfig
,
XLNetForSequenceClassification
,
XLNetTokenizer
,
DistilBertConfig
,
DistilBertForSequenceClassification
,
DistilBertTokenizer
,
AlbertConfig
,
AlbertForSequenceClassification
,
AlbertTokenizer
,
)
from
transformers
import
AdamW
,
get_linear_schedule_with_warmup
from
transformers
import
glue_compute_metrics
as
compute_metrics
from
hans_processors
import
glue_output_modes
as
output_modes
from
hans_processors
import
glue_processors
as
processors
from
hans_processors
import
hans_convert_examples_to_features
as
convert_examples_to_features
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
ALL_MODELS
=
sum
((
tuple
(
conf
.
pretrained_config_archive_map
.
keys
())
for
conf
in
(
BertConfig
,
XLNetConfig
,
XLMConfig
,
ALL_MODELS
=
sum
(
RobertaConfig
,
DistilBertConfig
)),
())
(
tuple
(
conf
.
pretrained_config_archive_map
.
keys
())
for
conf
in
(
BertConfig
,
XLNetConfig
,
XLMConfig
,
RobertaConfig
,
DistilBertConfig
)
),
(),
)
MODEL_CLASSES
=
{
MODEL_CLASSES
=
{
'
bert
'
:
(
BertConfig
,
BertForSequenceClassification
,
BertTokenizer
),
"
bert
"
:
(
BertConfig
,
BertForSequenceClassification
,
BertTokenizer
),
'
xlnet
'
:
(
XLNetConfig
,
XLNetForSequenceClassification
,
XLNetTokenizer
),
"
xlnet
"
:
(
XLNetConfig
,
XLNetForSequenceClassification
,
XLNetTokenizer
),
'
xlm
'
:
(
XLMConfig
,
XLMForSequenceClassification
,
XLMTokenizer
),
"
xlm
"
:
(
XLMConfig
,
XLMForSequenceClassification
,
XLMTokenizer
),
'
roberta
'
:
(
RobertaConfig
,
RobertaForSequenceClassification
,
RobertaTokenizer
),
"
roberta
"
:
(
RobertaConfig
,
RobertaForSequenceClassification
,
RobertaTokenizer
),
'
distilbert
'
:
(
DistilBertConfig
,
DistilBertForSequenceClassification
,
DistilBertTokenizer
),
"
distilbert
"
:
(
DistilBertConfig
,
DistilBertForSequenceClassification
,
DistilBertTokenizer
),
'
albert
'
:
(
AlbertConfig
,
AlbertForSequenceClassification
,
AlbertTokenizer
)
"
albert
"
:
(
AlbertConfig
,
AlbertForSequenceClassification
,
AlbertTokenizer
)
,
}
}
...
@@ -100,14 +112,19 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -100,14 +112,19 @@ def train(args, train_dataset, model, tokenizer):
t_total
=
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
t_total
=
len
(
train_dataloader
)
//
args
.
gradient_accumulation_steps
*
args
.
num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay
=
[
'
bias
'
,
'
LayerNorm.weight
'
]
no_decay
=
[
"
bias
"
,
"
LayerNorm.weight
"
]
optimizer_grouped_parameters
=
[
optimizer_grouped_parameters
=
[
{
'params'
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
args
.
weight_decay
},
{
{
'params'
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
any
(
nd
in
n
for
nd
in
no_decay
)],
'weight_decay'
:
0.0
}
"params"
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
not
any
(
nd
in
n
for
nd
in
no_decay
)],
]
"weight_decay"
:
args
.
weight_decay
,
},
{
"params"
:
[
p
for
n
,
p
in
model
.
named_parameters
()
if
any
(
nd
in
n
for
nd
in
no_decay
)],
"weight_decay"
:
0.0
},
]
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
optimizer
=
AdamW
(
optimizer_grouped_parameters
,
lr
=
args
.
learning_rate
,
eps
=
args
.
adam_epsilon
)
scheduler
=
get_linear_schedule_with_warmup
(
optimizer
,
num_warmup_steps
=
args
.
warmup_steps
,
num_training_steps
=
t_total
)
scheduler
=
get_linear_schedule_with_warmup
(
optimizer
,
num_warmup_steps
=
args
.
warmup_steps
,
num_training_steps
=
t_total
)
if
args
.
fp16
:
if
args
.
fp16
:
try
:
try
:
from
apex
import
amp
from
apex
import
amp
...
@@ -121,17 +138,21 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -121,17 +138,21 @@ def train(args, train_dataset, model, tokenizer):
# Distributed training (should be after apex fp16 initialization)
# Distributed training (should be after apex fp16 initialization)
if
args
.
local_rank
!=
-
1
:
if
args
.
local_rank
!=
-
1
:
model
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
model
,
device_ids
=
[
args
.
local_rank
],
model
=
torch
.
nn
.
parallel
.
DistributedDataParallel
(
output_device
=
args
.
local_rank
,
model
,
device_ids
=
[
args
.
local_rank
],
output_device
=
args
.
local_rank
,
find_unused_parameters
=
True
find_unused_parameters
=
True
)
)
# Train!
# Train!
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
"***** Running training *****"
)
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Num examples = %d"
,
len
(
train_dataset
))
logger
.
info
(
" Num Epochs = %d"
,
args
.
num_train_epochs
)
logger
.
info
(
" Num Epochs = %d"
,
args
.
num_train_epochs
)
logger
.
info
(
" Instantaneous batch size per GPU = %d"
,
args
.
per_gpu_train_batch_size
)
logger
.
info
(
" Instantaneous batch size per GPU = %d"
,
args
.
per_gpu_train_batch_size
)
logger
.
info
(
" Total train batch size (w. parallel, distributed & accumulation) = %d"
,
logger
.
info
(
args
.
train_batch_size
*
args
.
gradient_accumulation_steps
*
(
torch
.
distributed
.
get_world_size
()
if
args
.
local_rank
!=
-
1
else
1
))
" Total train batch size (w. parallel, distributed & accumulation) = %d"
,
args
.
train_batch_size
*
args
.
gradient_accumulation_steps
*
(
torch
.
distributed
.
get_world_size
()
if
args
.
local_rank
!=
-
1
else
1
),
)
logger
.
info
(
" Gradient Accumulation steps = %d"
,
args
.
gradient_accumulation_steps
)
logger
.
info
(
" Gradient Accumulation steps = %d"
,
args
.
gradient_accumulation_steps
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
logger
.
info
(
" Total optimization steps = %d"
,
t_total
)
...
@@ -145,16 +166,16 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -145,16 +166,16 @@ def train(args, train_dataset, model, tokenizer):
for
step
,
batch
in
enumerate
(
epoch_iterator
):
for
step
,
batch
in
enumerate
(
epoch_iterator
):
model
.
train
()
model
.
train
()
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
inputs
=
{
'
input_ids
'
:
batch
[
0
],
inputs
=
{
"
input_ids
"
:
batch
[
0
],
"attention_mask"
:
batch
[
1
],
"labels"
:
batch
[
3
]}
'attention_mask'
:
batch
[
1
],
if
args
.
model_type
!=
"distilbert"
:
'labels'
:
batch
[
3
]}
inputs
[
"token_type_ids"
]
=
(
if
args
.
model_type
!=
'distilbert'
:
batch
[
2
]
if
args
.
model_type
in
[
"bert"
,
"xlnet"
]
else
None
inputs
[
'token_type_ids'
]
=
batch
[
2
]
if
args
.
model_type
in
[
'bert'
,
'xlnet'
]
else
None
# XLM, DistilBERT and RoBERTa don't use segment_ids
)
# XLM, DistilBERT and RoBERTa don't use segment_ids
outputs
=
model
(
**
inputs
)
outputs
=
model
(
**
inputs
)
loss
=
outputs
[
0
]
# model outputs are always tuple in transformers (see doc)
loss
=
outputs
[
0
]
# model outputs are always tuple in transformers (see doc)
if
args
.
n_gpu
>
1
:
if
args
.
n_gpu
>
1
:
loss
=
loss
.
mean
()
# mean() to average on multi-gpu parallel training
loss
=
loss
.
mean
()
# mean() to average on multi-gpu parallel training
if
args
.
gradient_accumulation_steps
>
1
:
if
args
.
gradient_accumulation_steps
>
1
:
loss
=
loss
/
args
.
gradient_accumulation_steps
loss
=
loss
/
args
.
gradient_accumulation_steps
...
@@ -178,30 +199,34 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -178,30 +199,34 @@ def train(args, train_dataset, model, tokenizer):
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
logging_steps
>
0
and
global_step
%
args
.
logging_steps
==
0
:
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
logging_steps
>
0
and
global_step
%
args
.
logging_steps
==
0
:
logs
=
{}
logs
=
{}
if
args
.
local_rank
==
-
1
and
args
.
evaluate_during_training
:
# Only evaluate when single GPU otherwise metrics may not average well
if
(
args
.
local_rank
==
-
1
and
args
.
evaluate_during_training
):
# Only evaluate when single GPU otherwise metrics may not average well
results
=
evaluate
(
args
,
model
,
tokenizer
)
results
=
evaluate
(
args
,
model
,
tokenizer
)
for
key
,
value
in
results
.
items
():
for
key
,
value
in
results
.
items
():
eval_key
=
'
eval_{}
'
.
format
(
key
)
eval_key
=
"
eval_{}
"
.
format
(
key
)
logs
[
eval_key
]
=
value
logs
[
eval_key
]
=
value
loss_scalar
=
(
tr_loss
-
logging_loss
)
/
args
.
logging_steps
loss_scalar
=
(
tr_loss
-
logging_loss
)
/
args
.
logging_steps
learning_rate_scalar
=
scheduler
.
get_lr
()[
0
]
learning_rate_scalar
=
scheduler
.
get_lr
()[
0
]
logs
[
'
learning_rate
'
]
=
learning_rate_scalar
logs
[
"
learning_rate
"
]
=
learning_rate_scalar
logs
[
'
loss
'
]
=
loss_scalar
logs
[
"
loss
"
]
=
loss_scalar
logging_loss
=
tr_loss
logging_loss
=
tr_loss
for
key
,
value
in
logs
.
items
():
for
key
,
value
in
logs
.
items
():
tb_writer
.
add_scalar
(
key
,
value
,
global_step
)
tb_writer
.
add_scalar
(
key
,
value
,
global_step
)
#print(json.dumps({**logs, **{'step': global_step}}))
#
print(json.dumps({**logs, **{'step': global_step}}))
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
save_steps
>
0
and
global_step
%
args
.
save_steps
==
0
:
if
args
.
local_rank
in
[
-
1
,
0
]
and
args
.
save_steps
>
0
and
global_step
%
args
.
save_steps
==
0
:
# Save model checkpoint
# Save model checkpoint
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
'
checkpoint-{}
'
.
format
(
global_step
))
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
"
checkpoint-{}
"
.
format
(
global_step
))
if
not
os
.
path
.
exists
(
output_dir
):
if
not
os
.
path
.
exists
(
output_dir
):
os
.
makedirs
(
output_dir
)
os
.
makedirs
(
output_dir
)
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
=
(
model
.
module
if
hasattr
(
model
,
"module"
)
else
model
)
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
output_dir
)
model_to_save
.
save_pretrained
(
output_dir
)
torch
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
'
training_args.bin
'
))
torch
.
save
(
args
,
os
.
path
.
join
(
output_dir
,
"
training_args.bin
"
))
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
logger
.
info
(
"Saving model checkpoint to %s"
,
output_dir
)
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
if
args
.
max_steps
>
0
and
global_step
>
args
.
max_steps
:
...
@@ -220,7 +245,7 @@ def train(args, train_dataset, model, tokenizer):
...
@@ -220,7 +245,7 @@ def train(args, train_dataset, model, tokenizer):
def
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
""
):
def
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
""
):
# Loop to handle MNLI double evaluation (matched, mis-matched)
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names
=
(
"mnli"
,
"mnli-mm"
)
if
args
.
task_name
==
"mnli"
else
(
args
.
task_name
,)
eval_task_names
=
(
"mnli"
,
"mnli-mm"
)
if
args
.
task_name
==
"mnli"
else
(
args
.
task_name
,)
eval_outputs_dirs
=
(
args
.
output_dir
,
args
.
output_dir
+
'
-MM
'
)
if
args
.
task_name
==
"mnli"
else
(
args
.
output_dir
,)
eval_outputs_dirs
=
(
args
.
output_dir
,
args
.
output_dir
+
"
-MM
"
)
if
args
.
task_name
==
"mnli"
else
(
args
.
output_dir
,)
results
=
{}
results
=
{}
for
eval_task
,
eval_output_dir
in
zip
(
eval_task_names
,
eval_outputs_dirs
):
for
eval_task
,
eval_output_dir
in
zip
(
eval_task_names
,
eval_outputs_dirs
):
...
@@ -251,11 +276,11 @@ def evaluate(args, model, tokenizer, prefix=""):
...
@@ -251,11 +276,11 @@ def evaluate(args, model, tokenizer, prefix=""):
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
batch
=
tuple
(
t
.
to
(
args
.
device
)
for
t
in
batch
)
with
torch
.
no_grad
():
with
torch
.
no_grad
():
inputs
=
{
'
input_ids
'
:
batch
[
0
],
inputs
=
{
"
input_ids
"
:
batch
[
0
],
"attention_mask"
:
batch
[
1
],
"labels"
:
batch
[
3
]}
'attention_mask'
:
batch
[
1
],
if
args
.
model_type
!=
"distilbert"
:
'labels'
:
batch
[
3
]}
inputs
[
"token_type_ids"
]
=
(
if
args
.
model_type
!=
'distilbert'
:
batch
[
2
]
if
args
.
model_type
in
[
"bert"
,
"xlnet"
]
else
None
inputs
[
'token_type_ids'
]
=
batch
[
2
]
if
args
.
model_type
in
[
'bert'
,
'xlnet'
]
else
None
# XLM, DistilBERT and RoBERTa don't use segment_ids
)
# XLM, DistilBERT and RoBERTa don't use segment_ids
outputs
=
model
(
**
inputs
)
outputs
=
model
(
**
inputs
)
tmp_eval_loss
,
logits
=
outputs
[:
2
]
tmp_eval_loss
,
logits
=
outputs
[:
2
]
...
@@ -263,11 +288,11 @@ def evaluate(args, model, tokenizer, prefix=""):
...
@@ -263,11 +288,11 @@ def evaluate(args, model, tokenizer, prefix=""):
nb_eval_steps
+=
1
nb_eval_steps
+=
1
if
preds
is
None
:
if
preds
is
None
:
preds
=
logits
.
detach
().
cpu
().
numpy
()
preds
=
logits
.
detach
().
cpu
().
numpy
()
out_label_ids
=
inputs
[
'
labels
'
].
detach
().
cpu
().
numpy
()
out_label_ids
=
inputs
[
"
labels
"
].
detach
().
cpu
().
numpy
()
pair_ids
=
batch
[
4
].
detach
().
cpu
().
numpy
()
pair_ids
=
batch
[
4
].
detach
().
cpu
().
numpy
()
else
:
else
:
preds
=
np
.
append
(
preds
,
logits
.
detach
().
cpu
().
numpy
(),
axis
=
0
)
preds
=
np
.
append
(
preds
,
logits
.
detach
().
cpu
().
numpy
(),
axis
=
0
)
out_label_ids
=
np
.
append
(
out_label_ids
,
inputs
[
'
labels
'
].
detach
().
cpu
().
numpy
(),
axis
=
0
)
out_label_ids
=
np
.
append
(
out_label_ids
,
inputs
[
"
labels
"
].
detach
().
cpu
().
numpy
(),
axis
=
0
)
pair_ids
=
np
.
append
(
pair_ids
,
batch
[
4
].
detach
().
cpu
().
numpy
(),
axis
=
0
)
pair_ids
=
np
.
append
(
pair_ids
,
batch
[
4
].
detach
().
cpu
().
numpy
(),
axis
=
0
)
eval_loss
=
eval_loss
/
nb_eval_steps
eval_loss
=
eval_loss
/
nb_eval_steps
...
@@ -280,7 +305,7 @@ def evaluate(args, model, tokenizer, prefix=""):
...
@@ -280,7 +305,7 @@ def evaluate(args, model, tokenizer, prefix=""):
with
open
(
output_eval_file
,
"w"
)
as
writer
:
with
open
(
output_eval_file
,
"w"
)
as
writer
:
writer
.
write
(
"pairID,gld_label
\n
"
)
writer
.
write
(
"pairID,gld_label
\n
"
)
for
pid
,
pred
in
zip
(
pair_ids
,
preds
):
for
pid
,
pred
in
zip
(
pair_ids
,
preds
):
writer
.
write
(
'
ex
'
+
str
(
pid
)
+
','
+
label_list
[
int
(
pred
)]
+
'
\n
'
)
writer
.
write
(
"
ex
"
+
str
(
pid
)
+
","
+
label_list
[
int
(
pred
)]
+
"
\n
"
)
return
results
return
results
...
@@ -292,11 +317,15 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
...
@@ -292,11 +317,15 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
processor
=
processors
[
task
]()
processor
=
processors
[
task
]()
output_mode
=
output_modes
[
task
]
output_mode
=
output_modes
[
task
]
# Load data features from cache or dataset file
# Load data features from cache or dataset file
cached_features_file
=
os
.
path
.
join
(
args
.
data_dir
,
'cached_{}_{}_{}_{}'
.
format
(
cached_features_file
=
os
.
path
.
join
(
'dev'
if
evaluate
else
'train'
,
args
.
data_dir
,
list
(
filter
(
None
,
args
.
model_name_or_path
.
split
(
'/'
))).
pop
(),
"cached_{}_{}_{}_{}"
.
format
(
str
(
args
.
max_seq_length
),
"dev"
if
evaluate
else
"train"
,
str
(
task
)))
list
(
filter
(
None
,
args
.
model_name_or_path
.
split
(
"/"
))).
pop
(),
str
(
args
.
max_seq_length
),
str
(
task
),
),
)
label_list
=
processor
.
get_labels
()
label_list
=
processor
.
get_labels
()
...
@@ -305,18 +334,21 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
...
@@ -305,18 +334,21 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
features
=
torch
.
load
(
cached_features_file
)
features
=
torch
.
load
(
cached_features_file
)
else
:
else
:
logger
.
info
(
"Creating features from dataset file at %s"
,
args
.
data_dir
)
logger
.
info
(
"Creating features from dataset file at %s"
,
args
.
data_dir
)
if
task
in
[
'
mnli
'
,
'
mnli-mm
'
]
and
args
.
model_type
in
[
'
roberta
'
]:
if
task
in
[
"
mnli
"
,
"
mnli-mm
"
]
and
args
.
model_type
in
[
"
roberta
"
]:
# HACK(label indices are swapped in RoBERTa pretrained model)
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list
[
1
],
label_list
[
2
]
=
label_list
[
2
],
label_list
[
1
]
label_list
[
1
],
label_list
[
2
]
=
label_list
[
2
],
label_list
[
1
]
examples
=
processor
.
get_dev_examples
(
args
.
data_dir
)
if
evaluate
else
processor
.
get_train_examples
(
args
.
data_dir
)
examples
=
(
features
=
convert_examples_to_features
(
examples
,
processor
.
get_dev_examples
(
args
.
data_dir
)
if
evaluate
else
processor
.
get_train_examples
(
args
.
data_dir
)
tokenizer
,
)
label_list
=
label_list
,
features
=
convert_examples_to_features
(
max_length
=
args
.
max_seq_length
,
examples
,
output_mode
=
output_mode
,
tokenizer
,
pad_on_left
=
bool
(
args
.
model_type
in
[
'xlnet'
]),
# pad on the left for xlnet
label_list
=
label_list
,
pad_token
=
tokenizer
.
convert_tokens_to_ids
([
tokenizer
.
pad_token
])[
0
],
max_length
=
args
.
max_seq_length
,
pad_token_segment_id
=
4
if
args
.
model_type
in
[
'xlnet'
]
else
0
,
output_mode
=
output_mode
,
pad_on_left
=
bool
(
args
.
model_type
in
[
"xlnet"
]),
# pad on the left for xlnet
pad_token
=
tokenizer
.
convert_tokens_to_ids
([
tokenizer
.
pad_token
])[
0
],
pad_token_segment_id
=
4
if
args
.
model_type
in
[
"xlnet"
]
else
0
,
)
)
if
args
.
local_rank
in
[
-
1
,
0
]:
if
args
.
local_rank
in
[
-
1
,
0
]:
logger
.
info
(
"Saving features into cached file %s"
,
cached_features_file
)
logger
.
info
(
"Saving features into cached file %s"
,
cached_features_file
)
...
@@ -335,7 +367,6 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
...
@@ -335,7 +367,6 @@ def load_and_cache_examples(args, task, tokenizer, evaluate=False):
all_labels
=
torch
.
tensor
([
f
.
label
for
f
in
features
],
dtype
=
torch
.
float
)
all_labels
=
torch
.
tensor
([
f
.
label
for
f
in
features
],
dtype
=
torch
.
float
)
all_pair_ids
=
torch
.
tensor
([
int
(
f
.
pairID
)
for
f
in
features
],
dtype
=
torch
.
long
)
all_pair_ids
=
torch
.
tensor
([
int
(
f
.
pairID
)
for
f
in
features
],
dtype
=
torch
.
long
)
dataset
=
TensorDataset
(
all_input_ids
,
all_attention_mask
,
all_token_type_ids
,
all_labels
,
all_pair_ids
)
dataset
=
TensorDataset
(
all_input_ids
,
all_attention_mask
,
all_token_type_ids
,
all_labels
,
all_pair_ids
)
return
dataset
,
label_list
return
dataset
,
label_list
...
@@ -344,90 +375,149 @@ def main():
...
@@ -344,90 +375,149 @@ def main():
parser
=
argparse
.
ArgumentParser
()
parser
=
argparse
.
ArgumentParser
()
## Required parameters
## Required parameters
parser
.
add_argument
(
"--data_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
parser
.
add_argument
(
help
=
"The input data dir. Should contain the .tsv files (or other data files) for the task."
)
"--data_dir"
,
parser
.
add_argument
(
"--model_type"
,
default
=
None
,
type
=
str
,
required
=
True
,
default
=
None
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()))
type
=
str
,
parser
.
add_argument
(
"--model_name_or_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
required
=
True
,
help
=
"Path to pre-trained model or shortcut name selected in the list: "
+
", "
.
join
(
ALL_MODELS
))
help
=
"The input data dir. Should contain the .tsv files (or other data files) for the task."
,
parser
.
add_argument
(
"--task_name"
,
default
=
None
,
type
=
str
,
required
=
True
,
)
help
=
"The name of the task to train selected in the list: "
+
", "
.
join
(
processors
.
keys
()))
parser
.
add_argument
(
parser
.
add_argument
(
"--output_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
"--model_type"
,
help
=
"The output directory where the model predictions and checkpoints will be written."
)
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Model type selected in the list: "
+
", "
.
join
(
MODEL_CLASSES
.
keys
()),
)
parser
.
add_argument
(
"--model_name_or_path"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"Path to pre-trained model or shortcut name selected in the list: "
+
", "
.
join
(
ALL_MODELS
),
)
parser
.
add_argument
(
"--task_name"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The name of the task to train selected in the list: "
+
", "
.
join
(
processors
.
keys
()),
)
parser
.
add_argument
(
"--output_dir"
,
default
=
None
,
type
=
str
,
required
=
True
,
help
=
"The output directory where the model predictions and checkpoints will be written."
,
)
## Other parameters
## Other parameters
parser
.
add_argument
(
"--config_name"
,
default
=
""
,
type
=
str
,
parser
.
add_argument
(
help
=
"Pretrained config name or path if not the same as model_name"
)
"--config_name"
,
default
=
""
,
type
=
str
,
help
=
"Pretrained config name or path if not the same as model_name"
parser
.
add_argument
(
"--tokenizer_name"
,
default
=
""
,
type
=
str
,
)
help
=
"Pretrained tokenizer name or path if not the same as model_name"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--cache_dir"
,
default
=
""
,
type
=
str
,
"--tokenizer_name"
,
help
=
"Where do you want to store the pre-trained models downloaded from s3"
)
default
=
""
,
parser
.
add_argument
(
"--max_seq_length"
,
default
=
128
,
type
=
int
,
type
=
str
,
help
=
"The maximum total input sequence length after tokenization. Sequences longer "
help
=
"Pretrained tokenizer name or path if not the same as model_name"
,
"than this will be truncated, sequences shorter will be padded."
)
)
parser
.
add_argument
(
"--do_train"
,
action
=
'store_true'
,
parser
.
add_argument
(
help
=
"Whether to run training."
)
"--cache_dir"
,
parser
.
add_argument
(
"--do_eval"
,
action
=
'store_true'
,
default
=
""
,
help
=
"Whether to run eval on the dev set."
)
type
=
str
,
parser
.
add_argument
(
"--evaluate_during_training"
,
action
=
'store_true'
,
help
=
"Where do you want to store the pre-trained models downloaded from s3"
,
help
=
"Rul evaluation during training at each logging step."
)
)
parser
.
add_argument
(
"--do_lower_case"
,
action
=
'store_true'
,
parser
.
add_argument
(
help
=
"Set this flag if you are using an uncased model."
)
"--max_seq_length"
,
default
=
128
,
parser
.
add_argument
(
"--per_gpu_train_batch_size"
,
default
=
8
,
type
=
int
,
type
=
int
,
help
=
"Batch size per GPU/CPU for training."
)
help
=
"The maximum total input sequence length after tokenization. Sequences longer "
parser
.
add_argument
(
"--per_gpu_eval_batch_size"
,
default
=
8
,
type
=
int
,
"than this will be truncated, sequences shorter will be padded."
,
help
=
"Batch size per GPU/CPU for evaluation."
)
)
parser
.
add_argument
(
'--gradient_accumulation_steps'
,
type
=
int
,
default
=
1
,
parser
.
add_argument
(
"--do_train"
,
action
=
"store_true"
,
help
=
"Whether to run training."
)
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
)
parser
.
add_argument
(
"--do_eval"
,
action
=
"store_true"
,
help
=
"Whether to run eval on the dev set."
)
parser
.
add_argument
(
"--learning_rate"
,
default
=
5e-5
,
type
=
float
,
parser
.
add_argument
(
help
=
"The initial learning rate for Adam."
)
"--evaluate_during_training"
,
action
=
"store_true"
,
help
=
"Rul evaluation during training at each logging step."
parser
.
add_argument
(
"--weight_decay"
,
default
=
0.0
,
type
=
float
,
)
help
=
"Weight decay if we apply some."
)
parser
.
add_argument
(
parser
.
add_argument
(
"--adam_epsilon"
,
default
=
1e-8
,
type
=
float
,
"--do_lower_case"
,
action
=
"store_true"
,
help
=
"Set this flag if you are using an uncased model."
help
=
"Epsilon for Adam optimizer."
)
)
parser
.
add_argument
(
"--max_grad_norm"
,
default
=
1.0
,
type
=
float
,
help
=
"Max gradient norm."
)
parser
.
add_argument
(
"--per_gpu_train_batch_size"
,
default
=
8
,
type
=
int
,
help
=
"Batch size per GPU/CPU for training."
)
parser
.
add_argument
(
"--num_train_epochs"
,
default
=
3.0
,
type
=
float
,
parser
.
add_argument
(
help
=
"Total number of training epochs to perform."
)
"--per_gpu_eval_batch_size"
,
default
=
8
,
type
=
int
,
help
=
"Batch size per GPU/CPU for evaluation."
parser
.
add_argument
(
"--max_steps"
,
default
=-
1
,
type
=
int
,
)
help
=
"If > 0: set total number of training steps to perform. Override num_train_epochs."
)
parser
.
add_argument
(
parser
.
add_argument
(
"--warmup_steps"
,
default
=
0
,
type
=
int
,
"--gradient_accumulation_steps"
,
help
=
"Linear warmup over warmup_steps."
)
type
=
int
,
default
=
1
,
parser
.
add_argument
(
'--logging_steps'
,
type
=
int
,
default
=
50
,
help
=
"Number of updates steps to accumulate before performing a backward/update pass."
,
help
=
"Log every X updates steps."
)
)
parser
.
add_argument
(
'--save_steps'
,
type
=
int
,
default
=
50
,
parser
.
add_argument
(
"--learning_rate"
,
default
=
5e-5
,
type
=
float
,
help
=
"The initial learning rate for Adam."
)
help
=
"Save checkpoint every X updates steps."
)
parser
.
add_argument
(
"--weight_decay"
,
default
=
0.0
,
type
=
float
,
help
=
"Weight decay if we apply some."
)
parser
.
add_argument
(
"--eval_all_checkpoints"
,
action
=
'store_true'
,
parser
.
add_argument
(
"--adam_epsilon"
,
default
=
1e-8
,
type
=
float
,
help
=
"Epsilon for Adam optimizer."
)
help
=
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
)
parser
.
add_argument
(
"--max_grad_norm"
,
default
=
1.0
,
type
=
float
,
help
=
"Max gradient norm."
)
parser
.
add_argument
(
"--no_cuda"
,
action
=
'store_true'
,
parser
.
add_argument
(
help
=
"Avoid using CUDA when available"
)
"--num_train_epochs"
,
default
=
3.0
,
type
=
float
,
help
=
"Total number of training epochs to perform."
parser
.
add_argument
(
'--overwrite_output_dir'
,
action
=
'store_true'
,
)
help
=
"Overwrite the content of the output directory"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--overwrite_cache'
,
action
=
'store_true'
,
"--max_steps"
,
help
=
"Overwrite the cached training and evaluation sets"
)
default
=-
1
,
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
42
,
type
=
int
,
help
=
"random seed for initialization"
)
help
=
"If > 0: set total number of training steps to perform. Override num_train_epochs."
,
)
parser
.
add_argument
(
'--fp16'
,
action
=
'store_true'
,
parser
.
add_argument
(
"--warmup_steps"
,
default
=
0
,
type
=
int
,
help
=
"Linear warmup over warmup_steps."
)
help
=
"Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
)
parser
.
add_argument
(
'--fp16_opt_level'
,
type
=
str
,
default
=
'O1'
,
parser
.
add_argument
(
"--logging_steps"
,
type
=
int
,
default
=
50
,
help
=
"Log every X updates steps."
)
help
=
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
parser
.
add_argument
(
"--save_steps"
,
type
=
int
,
default
=
50
,
help
=
"Save checkpoint every X updates steps."
)
"See details at https://nvidia.github.io/apex/amp.html"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
default
=-
1
,
"--eval_all_checkpoints"
,
help
=
"For distributed training: local_rank"
)
action
=
"store_true"
,
parser
.
add_argument
(
'--server_ip'
,
type
=
str
,
default
=
''
,
help
=
"For distant debugging."
)
help
=
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
,
parser
.
add_argument
(
'--server_port'
,
type
=
str
,
default
=
''
,
help
=
"For distant debugging."
)
)
parser
.
add_argument
(
"--no_cuda"
,
action
=
"store_true"
,
help
=
"Avoid using CUDA when available"
)
parser
.
add_argument
(
"--overwrite_output_dir"
,
action
=
"store_true"
,
help
=
"Overwrite the content of the output directory"
)
parser
.
add_argument
(
"--overwrite_cache"
,
action
=
"store_true"
,
help
=
"Overwrite the cached training and evaluation sets"
)
parser
.
add_argument
(
"--seed"
,
type
=
int
,
default
=
42
,
help
=
"random seed for initialization"
)
parser
.
add_argument
(
"--fp16"
,
action
=
"store_true"
,
help
=
"Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
,
)
parser
.
add_argument
(
"--fp16_opt_level"
,
type
=
str
,
default
=
"O1"
,
help
=
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
,
)
parser
.
add_argument
(
"--local_rank"
,
type
=
int
,
default
=-
1
,
help
=
"For distributed training: local_rank"
)
parser
.
add_argument
(
"--server_ip"
,
type
=
str
,
default
=
""
,
help
=
"For distant debugging."
)
parser
.
add_argument
(
"--server_port"
,
type
=
str
,
default
=
""
,
help
=
"For distant debugging."
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
if
os
.
path
.
exists
(
args
.
output_dir
)
and
os
.
listdir
(
args
.
output_dir
)
and
args
.
do_train
and
not
args
.
overwrite_output_dir
:
if
(
raise
ValueError
(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
.
format
(
args
.
output_dir
))
os
.
path
.
exists
(
args
.
output_dir
)
and
os
.
listdir
(
args
.
output_dir
)
and
args
.
do_train
and
not
args
.
overwrite_output_dir
):
raise
ValueError
(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
.
format
(
args
.
output_dir
)
)
# Setup distant debugging if needed
# Setup distant debugging if needed
if
args
.
server_ip
and
args
.
server_port
:
if
args
.
server_ip
and
args
.
server_port
:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import
ptvsd
import
ptvsd
print
(
"Waiting for debugger attach"
)
print
(
"Waiting for debugger attach"
)
ptvsd
.
enable_attach
(
address
=
(
args
.
server_ip
,
args
.
server_port
),
redirect_output
=
True
)
ptvsd
.
enable_attach
(
address
=
(
args
.
server_ip
,
args
.
server_port
),
redirect_output
=
True
)
ptvsd
.
wait_for_attach
()
ptvsd
.
wait_for_attach
()
...
@@ -439,16 +529,24 @@ def main():
...
@@ -439,16 +529,24 @@ def main():
else
:
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
else
:
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch
.
cuda
.
set_device
(
args
.
local_rank
)
torch
.
cuda
.
set_device
(
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
device
=
torch
.
device
(
"cuda"
,
args
.
local_rank
)
torch
.
distributed
.
init_process_group
(
backend
=
'
nccl
'
)
torch
.
distributed
.
init_process_group
(
backend
=
"
nccl
"
)
args
.
n_gpu
=
1
args
.
n_gpu
=
1
args
.
device
=
device
args
.
device
=
device
# Setup logging
# Setup logging
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(name)s - %(message)s'
,
logging
.
basicConfig
(
datefmt
=
'%m/%d/%Y %H:%M:%S'
,
format
=
"%(asctime)s - %(levelname)s - %(name)s - %(message)s"
,
level
=
logging
.
INFO
if
args
.
local_rank
in
[
-
1
,
0
]
else
logging
.
WARN
)
datefmt
=
"%m/%d/%Y %H:%M:%S"
,
logger
.
warning
(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s"
,
level
=
logging
.
INFO
if
args
.
local_rank
in
[
-
1
,
0
]
else
logging
.
WARN
,
args
.
local_rank
,
device
,
args
.
n_gpu
,
bool
(
args
.
local_rank
!=
-
1
),
args
.
fp16
)
)
logger
.
warning
(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s"
,
args
.
local_rank
,
device
,
args
.
n_gpu
,
bool
(
args
.
local_rank
!=
-
1
),
args
.
fp16
,
)
# Set seed
# Set seed
set_seed
(
args
)
set_seed
(
args
)
...
@@ -468,17 +566,23 @@ def main():
...
@@ -468,17 +566,23 @@ def main():
args
.
model_type
=
args
.
model_type
.
lower
()
args
.
model_type
=
args
.
model_type
.
lower
()
config_class
,
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
config_class
,
model_class
,
tokenizer_class
=
MODEL_CLASSES
[
args
.
model_type
]
config
=
config_class
.
from_pretrained
(
args
.
config_name
if
args
.
config_name
else
args
.
model_name_or_path
,
config
=
config_class
.
from_pretrained
(
num_labels
=
num_labels
,
args
.
config_name
if
args
.
config_name
else
args
.
model_name_or_path
,
finetuning_task
=
args
.
task_name
,
num_labels
=
num_labels
,
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
)
finetuning_task
=
args
.
task_name
,
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
tokenizer_name
if
args
.
tokenizer_name
else
args
.
model_name_or_path
,
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
,
do_lower_case
=
args
.
do_lower_case
,
)
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
model
=
model_class
.
from_pretrained
(
args
.
model_name_or_path
,
args
.
tokenizer_name
if
args
.
tokenizer_name
else
args
.
model_name_or_path
,
from_tf
=
bool
(
'.ckpt'
in
args
.
model_name_or_path
),
do_lower_case
=
args
.
do_lower_case
,
config
=
config
,
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
,
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
)
)
model
=
model_class
.
from_pretrained
(
args
.
model_name_or_path
,
from_tf
=
bool
(
".ckpt"
in
args
.
model_name_or_path
),
config
=
config
,
cache_dir
=
args
.
cache_dir
if
args
.
cache_dir
else
None
,
)
if
args
.
local_rank
==
0
:
if
args
.
local_rank
==
0
:
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
torch
.
distributed
.
barrier
()
# Make sure only the first process in distributed training will download model & vocab
...
@@ -487,14 +591,12 @@ def main():
...
@@ -487,14 +591,12 @@ def main():
logger
.
info
(
"Training/evaluation parameters %s"
,
args
)
logger
.
info
(
"Training/evaluation parameters %s"
,
args
)
# Training
# Training
if
args
.
do_train
:
if
args
.
do_train
:
train_dataset
,
_
=
load_and_cache_examples
(
args
,
args
.
task_name
,
tokenizer
,
evaluate
=
False
)
train_dataset
,
_
=
load_and_cache_examples
(
args
,
args
.
task_name
,
tokenizer
,
evaluate
=
False
)
global_step
,
tr_loss
=
train
(
args
,
train_dataset
,
model
,
tokenizer
)
global_step
,
tr_loss
=
train
(
args
,
train_dataset
,
model
,
tokenizer
)
logger
.
info
(
" global_step = %s, average loss = %s"
,
global_step
,
tr_loss
)
logger
.
info
(
" global_step = %s, average loss = %s"
,
global_step
,
tr_loss
)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if
args
.
do_train
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
):
if
args
.
do_train
and
(
args
.
local_rank
==
-
1
or
torch
.
distributed
.
get_rank
()
==
0
):
# Create output directory if needed
# Create output directory if needed
...
@@ -504,36 +606,39 @@ def main():
...
@@ -504,36 +606,39 @@ def main():
logger
.
info
(
"Saving model checkpoint to %s"
,
args
.
output_dir
)
logger
.
info
(
"Saving model checkpoint to %s"
,
args
.
output_dir
)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
# They can then be reloaded using `from_pretrained()`
model_to_save
=
model
.
module
if
hasattr
(
model
,
'module'
)
else
model
# Take care of distributed/parallel training
model_to_save
=
(
model
.
module
if
hasattr
(
model
,
"module"
)
else
model
)
# Take care of distributed/parallel training
model_to_save
.
save_pretrained
(
args
.
output_dir
)
model_to_save
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
tokenizer
.
save_pretrained
(
args
.
output_dir
)
# Good practice: save your training arguments together with the trained model
# Good practice: save your training arguments together with the trained model
torch
.
save
(
args
,
os
.
path
.
join
(
args
.
output_dir
,
'
training_args.bin
'
))
torch
.
save
(
args
,
os
.
path
.
join
(
args
.
output_dir
,
"
training_args.bin
"
))
# Load a trained model and vocabulary that you have fine-tuned
# Load a trained model and vocabulary that you have fine-tuned
model
=
model_class
.
from_pretrained
(
args
.
output_dir
)
model
=
model_class
.
from_pretrained
(
args
.
output_dir
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
)
model
.
to
(
args
.
device
)
model
.
to
(
args
.
device
)
# Evaluation
# Evaluation
results
=
{}
results
=
{}
if
args
.
do_eval
and
args
.
local_rank
in
[
-
1
,
0
]:
if
args
.
do_eval
and
args
.
local_rank
in
[
-
1
,
0
]:
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
,
do_lower_case
=
args
.
do_lower_case
)
tokenizer
=
tokenizer_class
.
from_pretrained
(
args
.
output_dir
,
do_lower_case
=
args
.
do_lower_case
)
checkpoints
=
[
args
.
output_dir
]
checkpoints
=
[
args
.
output_dir
]
if
args
.
eval_all_checkpoints
:
if
args
.
eval_all_checkpoints
:
checkpoints
=
list
(
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
'/**/'
+
WEIGHTS_NAME
,
recursive
=
True
)))
checkpoints
=
list
(
os
.
path
.
dirname
(
c
)
for
c
in
sorted
(
glob
.
glob
(
args
.
output_dir
+
"/**/"
+
WEIGHTS_NAME
,
recursive
=
True
))
)
logging
.
getLogger
(
"transformers.modeling_utils"
).
setLevel
(
logging
.
WARN
)
# Reduce logging
logging
.
getLogger
(
"transformers.modeling_utils"
).
setLevel
(
logging
.
WARN
)
# Reduce logging
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
logger
.
info
(
"Evaluate the following checkpoints: %s"
,
checkpoints
)
for
checkpoint
in
checkpoints
:
for
checkpoint
in
checkpoints
:
global_step
=
checkpoint
.
split
(
'-'
)[
-
1
]
if
len
(
checkpoints
)
>
1
else
""
global_step
=
checkpoint
.
split
(
"-"
)[
-
1
]
if
len
(
checkpoints
)
>
1
else
""
prefix
=
checkpoint
.
split
(
'/'
)[
-
1
]
if
checkpoint
.
find
(
'
checkpoint
'
)
!=
-
1
else
""
prefix
=
checkpoint
.
split
(
"/"
)[
-
1
]
if
checkpoint
.
find
(
"
checkpoint
"
)
!=
-
1
else
""
model
=
model_class
.
from_pretrained
(
checkpoint
)
model
=
model_class
.
from_pretrained
(
checkpoint
)
model
.
to
(
args
.
device
)
model
.
to
(
args
.
device
)
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
prefix
)
result
=
evaluate
(
args
,
model
,
tokenizer
,
prefix
=
prefix
)
result
=
dict
((
k
+
'
_{}
'
.
format
(
global_step
),
v
)
for
k
,
v
in
result
.
items
())
result
=
dict
((
k
+
"
_{}
"
.
format
(
global_step
),
v
)
for
k
,
v
in
result
.
items
())
results
.
update
(
result
)
results
.
update
(
result
)
return
results
return
results
...
...
examples/hans/utils_hans.py
View file @
1c933358
...
@@ -14,10 +14,11 @@
...
@@ -14,10 +14,11 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
csv
import
sys
import
copy
import
copy
import
csv
import
json
import
json
import
sys
class
InputExample
(
object
):
class
InputExample
(
object
):
"""
"""
...
@@ -32,6 +33,7 @@ class InputExample(object):
...
@@ -32,6 +33,7 @@ class InputExample(object):
label: (Optional) string. The label of the example. This should be
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
specified for train and dev examples, but not for test examples.
"""
"""
def
__init__
(
self
,
guid
,
text_a
,
text_b
=
None
,
label
=
None
,
pairID
=
None
):
def
__init__
(
self
,
guid
,
text_a
,
text_b
=
None
,
label
=
None
,
pairID
=
None
):
self
.
guid
=
guid
self
.
guid
=
guid
self
.
text_a
=
text_a
self
.
text_a
=
text_a
...
@@ -117,6 +119,6 @@ class DataProcessor(object):
...
@@ -117,6 +119,6 @@ class DataProcessor(object):
lines
=
[]
lines
=
[]
for
line
in
reader
:
for
line
in
reader
:
if
sys
.
version_info
[
0
]
==
2
:
if
sys
.
version_info
[
0
]
==
2
:
line
=
list
(
unicode
(
cell
,
'
utf-8
'
)
for
cell
in
line
)
line
=
list
(
unicode
(
cell
,
"
utf-8
"
)
for
cell
in
line
)
lines
.
append
(
line
)
lines
.
append
(
line
)
return
lines
return
lines
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment