Unverified Commit 1c81132e authored by Pablo Montalvo's avatar Pablo Montalvo Committed by GitHub
Browse files

Raise unused kwargs image processor (#29063)

* draft processor arg capture

* add missing vivit model

* add new common test for image preprocess signature

* fix quality

* fix up

* add back missing validations

* quality

* move info level to warning for unused kwargs
parent b8b16475
......@@ -28,6 +28,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
......@@ -137,6 +138,18 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
self.apply_ocr = apply_ocr
self.ocr_lang = ocr_lang
self.tesseract_config = tesseract_config
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"apply_ocr",
"ocr_lang",
"tesseract_config",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
......@@ -244,6 +257,8 @@ class LayoutLMv2ImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -31,6 +31,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
......@@ -164,6 +165,23 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
self.apply_ocr = apply_ocr
self.ocr_lang = ocr_lang
self.tesseract_config = tesseract_config
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"apply_ocr",
"ocr_lang",
"tesseract_config",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
......@@ -298,6 +316,8 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
tesseract_config = tesseract_config if tesseract_config is not None else self.tesseract_config
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -35,6 +35,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -115,6 +116,22 @@ class LevitImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
......@@ -254,6 +271,8 @@ class LevitImageProcessor(BaseImageProcessor):
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -39,6 +39,7 @@ from ...image_utils import (
is_scaled_image,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
......@@ -439,6 +440,25 @@ class Mask2FormerImageProcessor(BaseImageProcessor):
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.ignore_index = ignore_index
self.reduce_labels = reduce_labels
self._valid_processor_keys = [
"images",
"segmentation_maps",
"instance_id_to_semantic_id",
"do_resize",
"size",
"size_divisor",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"ignore_index",
"reduce_labels",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
......@@ -708,6 +728,8 @@ class Mask2FormerImageProcessor(BaseImageProcessor):
ignore_index = ignore_index if ignore_index is not None else self.ignore_index
reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -39,6 +39,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
......@@ -448,6 +449,25 @@ class MaskFormerImageProcessor(BaseImageProcessor):
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.ignore_index = ignore_index
self.do_reduce_labels = do_reduce_labels
self._valid_processor_keys = [
"images",
"segmentation_maps",
"instance_id_to_semantic_id",
"do_resize",
"size",
"size_divisor",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"ignore_index",
"do_reduce_labels",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
......@@ -730,6 +750,8 @@ class MaskFormerImageProcessor(BaseImageProcessor):
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
......
......@@ -35,6 +35,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -113,6 +114,22 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
def resize(
......@@ -245,6 +262,8 @@ class MobileNetV1ImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -35,6 +35,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
......@@ -117,6 +118,22 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize
def resize(
......@@ -249,6 +266,8 @@ class MobileNetV2ImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -29,6 +29,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
......@@ -104,6 +105,21 @@ class MobileViTImageProcessor(BaseImageProcessor):
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_flip_channel_order = do_flip_channel_order
self._valid_processor_keys = [
"images",
"segmentation_maps",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_center_crop",
"crop_size",
"do_flip_channel_order",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.mobilenet_v1.image_processing_mobilenet_v1.MobileNetV1ImageProcessor.resize with PILImageResampling.BICUBIC->PILImageResampling.BILINEAR
def resize(
......@@ -366,6 +382,9 @@ class MobileViTImageProcessor(BaseImageProcessor):
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
......
......@@ -38,6 +38,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -125,6 +126,24 @@ class NougatImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_crop_margin",
"do_resize",
"size",
"resample",
"do_thumbnail",
"do_align_long_axis",
"do_pad",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def python_find_non_zero(self, image: np.array):
"""This is a reimplementation of a findNonZero function equivalent to cv2."""
......@@ -442,6 +461,8 @@ class NougatImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -42,6 +42,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
......@@ -467,6 +468,25 @@ class OneFormerImageProcessor(BaseImageProcessor):
self.repo_path = repo_path
self.metadata = prepare_metadata(load_metadata(repo_path, class_info_file))
self.num_text = num_text
self._valid_processor_keys = [
"images",
"task_inputs",
"segmentation_maps",
"instance_id_to_semantic_id",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"ignore_index",
"do_reduce_labels",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
......@@ -714,6 +734,9 @@ class OneFormerImageProcessor(BaseImageProcessor):
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
......
......@@ -37,6 +37,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
......@@ -232,6 +233,20 @@ class Owlv2ImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self._valid_processor_keys = [
"images",
"do_pad",
"do_resize",
"size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def pad(
self,
......@@ -401,6 +416,8 @@ class Owlv2ImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -38,6 +38,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_torch_available, logging
......@@ -166,6 +167,22 @@ class OwlViTImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
......@@ -356,6 +373,7 @@ class OwlViTImageProcessor(BaseImageProcessor):
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
validate_preprocess_arguments(
do_rescale=do_rescale,
......
......@@ -32,6 +32,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
......@@ -113,6 +114,22 @@ class PerceiverImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_center_crop",
"crop_size",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def center_crop(
self,
......@@ -286,6 +303,8 @@ class PerceiverImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -35,6 +35,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
......@@ -132,6 +133,23 @@ class PoolFormerImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"crop_pct",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
......@@ -293,6 +311,8 @@ class PoolFormerImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -31,6 +31,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -95,6 +96,20 @@ class PvtImageProcessor(BaseImageProcessor):
self.rescale_factor = rescale_factor
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize
def resize(
......@@ -218,6 +233,8 @@ class PvtImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -34,6 +34,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import (
......@@ -160,6 +161,26 @@ class SamImageProcessor(BaseImageProcessor):
self.pad_size = pad_size
self.mask_pad_size = mask_pad_size
self.do_convert_rgb = do_convert_rgb
self._valid_processor_keys = [
"images",
"segmentation_maps",
"do_resize",
"size",
"mask_size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"do_pad",
"pad_size",
"mask_pad_size",
"do_convert_rgb",
"return_tensors",
"data_format",
"input_data_format",
]
def pad_image(
self,
......@@ -491,6 +512,8 @@ class SamImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -32,6 +32,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
......@@ -118,6 +119,22 @@ class SegformerImageProcessor(BaseImageProcessor):
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_reduce_labels = do_reduce_labels
self._valid_processor_keys = [
"images",
"segmentation_maps",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"do_reduce_labels",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
......@@ -380,6 +397,9 @@ class SegformerImageProcessor(BaseImageProcessor):
image_std = image_std if image_std is not None else self.image_std
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if segmentation_maps is not None:
segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2)
......
......@@ -32,6 +32,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, is_vision_available, logging
......@@ -101,6 +102,20 @@ class SiglipImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self._valid_processor_keys = [
"images",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"return_tensors",
"data_format",
"input_data_format",
]
def preprocess(
self,
......@@ -174,6 +189,8 @@ class SiglipImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -28,6 +28,7 @@ from ...image_utils import (
make_list_of_images,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -65,6 +66,16 @@ class Swin2SRImageProcessor(BaseImageProcessor):
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.pad_size = pad_size
self._valid_processor_keys = [
"images",
"do_rescale",
"rescale_factor",
"do_pad",
"pad_size",
"return_tensors",
"data_format",
"input_data_format",
]
def pad(
self,
......@@ -161,6 +172,8 @@ class Swin2SRImageProcessor(BaseImageProcessor):
images = make_list_of_images(images)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
......@@ -34,6 +34,7 @@ from ...image_utils import (
is_valid_image,
to_numpy_array,
valid_images,
validate_kwargs,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
......@@ -151,6 +152,25 @@ class TvltImageProcessor(BaseImageProcessor):
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self._valid_processor_keys = [
"videos",
"do_resize",
"size",
"patch_size",
"num_frames",
"resample",
"do_center_crop",
"crop_size",
"do_rescale",
"rescale_factor",
"do_normalize",
"image_mean",
"image_std",
"is_mixed",
"return_tensors",
"data_format",
"input_data_format",
]
def resize(
self,
......@@ -357,6 +377,8 @@ class TvltImageProcessor(BaseImageProcessor):
patch_size = patch_size if patch_size is not None else self.patch_size
num_frames = num_frames if patch_size is not None else self.num_frames
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
if not valid_images(videos):
raise ValueError(
"Invalid image or video type. Must be of type PIL.Image.Image, numpy.ndarray, "
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment