Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1b5ab39c
Unverified
Commit
1b5ab39c
authored
Sep 22, 2022
by
Joao Gante
Committed by
GitHub
Sep 22, 2022
Browse files
TF: check embeddings range (#19102)
parent
cf6308ef
Changes
37
Show whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
230 additions
and
0 deletions
+230
-0
src/transformers/models/lxmert/modeling_tf_lxmert.py
src/transformers/models/lxmert/modeling_tf_lxmert.py
+10
-0
src/transformers/models/marian/modeling_tf_marian.py
src/transformers/models/marian/modeling_tf_marian.py
+20
-0
src/transformers/models/mbart/modeling_tf_mbart.py
src/transformers/models/mbart/modeling_tf_mbart.py
+20
-0
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
+10
-0
src/transformers/models/mpnet/modeling_tf_mpnet.py
src/transformers/models/mpnet/modeling_tf_mpnet.py
+10
-0
src/transformers/models/openai/modeling_tf_openai.py
src/transformers/models/openai/modeling_tf_openai.py
+20
-0
src/transformers/models/opt/modeling_tf_opt.py
src/transformers/models/opt/modeling_tf_opt.py
+10
-0
src/transformers/models/pegasus/modeling_tf_pegasus.py
src/transformers/models/pegasus/modeling_tf_pegasus.py
+20
-0
src/transformers/models/rembert/modeling_tf_rembert.py
src/transformers/models/rembert/modeling_tf_rembert.py
+10
-0
src/transformers/models/roberta/modeling_tf_roberta.py
src/transformers/models/roberta/modeling_tf_roberta.py
+10
-0
src/transformers/models/roformer/modeling_tf_roformer.py
src/transformers/models/roformer/modeling_tf_roformer.py
+10
-0
src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
...rmers/models/speech_to_text/modeling_tf_speech_to_text.py
+10
-0
src/transformers/models/t5/modeling_tf_t5.py
src/transformers/models/t5/modeling_tf_t5.py
+10
-0
src/transformers/models/xglm/modeling_tf_xglm.py
src/transformers/models/xglm/modeling_tf_xglm.py
+10
-0
src/transformers/models/xlm/modeling_tf_xlm.py
src/transformers/models/xlm/modeling_tf_xlm.py
+10
-0
src/transformers/models/xlnet/modeling_tf_xlnet.py
src/transformers/models/xlnet/modeling_tf_xlnet.py
+10
-0
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
...ame}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
+30
-0
No files found.
src/transformers/models/lxmert/modeling_tf_lxmert.py
View file @
1b5ab39c
...
...
@@ -227,6 +227,16 @@ class TFLxmertEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/marian/modeling_tf_marian.py
View file @
1b5ab39c
...
...
@@ -772,6 +772,16 @@ class TFMarianEncoder(tf.keras.layers.Layer):
raise
ValueError
(
"You have to specify either input_ids or inputs_embeds"
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
embed_pos
=
self
.
embed_positions
(
input_shape
)
...
...
@@ -967,6 +977,16 @@ class TFMarianDecoder(tf.keras.layers.Layer):
positions
=
self
.
embed_positions
(
input_shape
,
position_ids
=
position_ids
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
hidden_states
=
inputs_embeds
...
...
src/transformers/models/mbart/modeling_tf_mbart.py
View file @
1b5ab39c
...
...
@@ -757,6 +757,16 @@ class TFMBartEncoder(tf.keras.layers.Layer):
raise
ValueError
(
"You have to specify either input_ids or inputs_embeds"
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
embed_pos
=
self
.
embed_positions
(
input_shape
)
...
...
@@ -959,6 +969,16 @@ class TFMBartDecoder(tf.keras.layers.Layer):
positions
=
self
.
embed_positions
(
input_shape
,
position_ids
=
position_ids
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
hidden_states
=
inputs_embeds
...
...
src/transformers/models/mobilebert/modeling_tf_mobilebert.py
View file @
1b5ab39c
...
...
@@ -214,6 +214,16 @@ class TFMobileBertEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/mpnet/modeling_tf_mpnet.py
View file @
1b5ab39c
...
...
@@ -145,6 +145,16 @@ class TFMPNetEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/openai/modeling_tf_openai.py
View file @
1b5ab39c
...
...
@@ -298,10 +298,30 @@ class TFOpenAIGPTMainLayer(tf.keras.layers.Layer):
position_ids
=
tf
.
reshape
(
position_ids
,
[
-
1
,
shape_list
(
position_ids
)[
-
1
]])
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
tokens_embed
(
input_ids
,
mode
=
"embedding"
)
position_embeds
=
tf
.
gather
(
self
.
positions_embed
,
position_ids
)
if
token_type_ids
is
not
None
:
token_type_ids
=
tf
.
reshape
(
token_type_ids
,
[
-
1
,
shape_list
(
token_type_ids
)[
-
1
]])
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
token_type_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
token_type_ids
.
dtype
),
message
=
(
"token_type_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
token_type_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
token_type_embeds
=
self
.
tokens_embed
(
token_type_ids
,
mode
=
"embedding"
)
else
:
token_type_embeds
=
0
...
...
src/transformers/models/opt/modeling_tf_opt.py
View file @
1b5ab39c
...
...
@@ -632,6 +632,16 @@ class TFOPTDecoder(tf.keras.layers.Layer):
past_key_values_length
=
shape_list
(
past_key_values
[
0
][
0
])[
2
]
if
past_key_values
is
not
None
else
0
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
if
attention_mask
is
None
:
...
...
src/transformers/models/pegasus/modeling_tf_pegasus.py
View file @
1b5ab39c
...
...
@@ -775,6 +775,16 @@ class TFPegasusEncoder(tf.keras.layers.Layer):
raise
ValueError
(
"You have to specify either input_ids or inputs_embeds"
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
embed_pos
=
self
.
embed_positions
(
input_shape
)
...
...
@@ -973,6 +983,16 @@ class TFPegasusDecoder(tf.keras.layers.Layer):
positions
=
self
.
embed_positions
(
input_shape
,
position_ids
=
position_ids
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
hidden_states
=
inputs_embeds
...
...
src/transformers/models/rembert/modeling_tf_rembert.py
View file @
1b5ab39c
...
...
@@ -124,6 +124,16 @@ class TFRemBertEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/roberta/modeling_tf_roberta.py
View file @
1b5ab39c
...
...
@@ -146,6 +146,16 @@ class TFRobertaEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/roformer/modeling_tf_roformer.py
View file @
1b5ab39c
...
...
@@ -177,6 +177,16 @@ class TFRoFormerEmbeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
src/transformers/models/speech_to_text/modeling_tf_speech_to_text.py
View file @
1b5ab39c
...
...
@@ -1022,6 +1022,16 @@ class TFSpeech2TextDecoder(tf.keras.layers.Layer):
past_key_values_length
=
shape_list
(
past_key_values
[
0
][
0
])[
2
]
if
past_key_values
is
not
None
else
0
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
else
:
inputs_embeds
=
inputs_embeds
...
...
src/transformers/models/t5/modeling_tf_t5.py
View file @
1b5ab39c
...
...
@@ -681,6 +681,16 @@ class TFT5MainLayer(tf.keras.layers.Layer):
if
inputs_embeds
is
None
:
assert
self
.
embed_tokens
is
not
None
,
"You have to initialize the model with valid token embeddings"
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
batch_size
,
seq_length
=
input_shape
...
...
src/transformers/models/xglm/modeling_tf_xglm.py
View file @
1b5ab39c
...
...
@@ -533,6 +533,16 @@ class TFXGLMMainLayer(tf.keras.layers.Layer):
past_key_values_length
=
past_key_values
[
0
][
0
].
shape
[
2
]
if
past_key_values
is
not
None
else
0
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
attention_mask
=
self
.
_prepare_decoder_attention_mask
(
attention_mask
,
input_shape
,
past_key_values_length
)
...
...
src/transformers/models/xlm/modeling_tf_xlm.py
View file @
1b5ab39c
...
...
@@ -440,6 +440,16 @@ class TFXLMMainLayer(tf.keras.layers.Layer):
# embeddings
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embeddings
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embeddings
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embeddings
(
input_ids
)
tensor
=
inputs_embeds
+
tf
.
gather
(
self
.
position_embeddings
,
position_ids
)
...
...
src/transformers/models/xlnet/modeling_tf_xlnet.py
View file @
1b5ab39c
...
...
@@ -680,6 +680,16 @@ class TFXLNetMainLayer(tf.keras.layers.Layer):
if
inputs_embeds
is
not
None
:
word_emb_k
=
inputs_embeds
else
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
word_embedding
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
word_embedding
.
vocab_size
}
)"
),
)
word_emb_k
=
self
.
word_embedding
(
input_ids
)
output_h
=
self
.
dropout
(
word_emb_k
,
training
=
training
)
if
target_mapping
is
not
None
:
...
...
templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py
View file @
1b5ab39c
...
...
@@ -127,6 +127,16 @@ class TF{{cookiecutter.camelcase_modelname}}Embeddings(tf.keras.layers.Layer):
assert
not
(
input_ids
is
None
and
inputs_embeds
is
None
)
if
input_ids
is
not
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
vocab_size
}
)"
),
)
inputs_embeds
=
tf
.
gather
(
params
=
self
.
weight
,
indices
=
input_ids
)
input_shape
=
shape_list
(
inputs_embeds
)[:
-
1
]
...
...
@@ -2305,6 +2315,16 @@ class TF{{cookiecutter.camelcase_modelname}}Encoder(tf.keras.layers.Layer):
raise
ValueError
(
"You have to specify either input_ids or inputs_embeds"
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
*
self
.
embed_scale
embed_pos
=
self
.
embed_positions
(
input_shape
)
...
...
@@ -2494,6 +2514,16 @@ class TF{{cookiecutter.camelcase_modelname}}Decoder(tf.keras.layers.Layer):
positions
=
self
.
embed_positions
(
input_shape
,
past_key_values_length
)
if
inputs_embeds
is
None
:
# Note: tf.gather, on which the embedding layer is based, won't check positive out of bound
# indices on GPU, returning zeros instead. This is a dangerous silent behavior.
tf
.
debugging
.
assert_less
(
input_ids
,
tf
.
cast
(
self
.
embed_tokens
.
vocab_size
,
dtype
=
input_ids
.
dtype
),
message
=
(
"input_ids must be smaller than the embedding layer's input dimension (got"
f
"
{
tf
.
math
.
reduce_max
(
input_ids
)
}
>=
{
self
.
embed_tokens
.
vocab_size
}
)"
),
)
inputs_embeds
=
self
.
embed_tokens
(
input_ids
)
hidden_states
=
inputs_embeds
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment