"docs/vscode:/vscode.git/clone" did not exist on "dd288303273a96ebe38346d048b2900bbd747989"
Commit 1ae81e4a authored by VictorSanh's avatar VictorSanh
Browse files

add dataset. distiller, utils

parent 5d29f8e9
from typing import List
import math
from itertools import chain
from collections import Counter
import numpy as np
import torch
from utils import logger
class Dataset:
def __init__(self,
params,
data):
self.params = params
self.tokens_per_batch = params.tokens_per_batch
self.batch_size = params.batch_size
self.shuffle = params.shuffle
self.group_by_size = params.group_by_size
self.token_ids = np.array(data)
self.lengths = np.uint16([len(t) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.check()
self.print_statistics()
def __len__(self):
return len(self.lengths)
def check(self):
"""
Some sanity checks
"""
assert len(self.token_ids) == len(self.lengths)
def remove_long_sequences(self):
"""
Sequences that are too long are splitted by chunk of max_position_embeddings.
"""
indices = self.lengths >= self.params.max_position_embeddings
logger.info(f'Splitting {sum(indices)} too long sequences.')
def divide_chunks(l, n):
return [l[i:i + n] for i in range(0, len(l), n)]
new_tok_ids = []
new_lengths = []
cls_id, sep_id = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token']
max_len = self.params.max_position_embeddings
for seq_, len_ in zip(self.token_ids, self.lengths):
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
sub_seqs = []
for sub_s in divide_chunks(seq_, max_len-2):
if sub_s[0] != cls_id:
sub_s = np.insert(sub_s, 0, cls_id)
if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), cls_id)
assert len(sub_s) <= max_len
sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs)
new_lengths.extend([len(l) for l in sub_seqs])
self.token_ids = np.array(new_tok_ids)
self.lengths = np.array(new_lengths)
def remove_empty_sequences(self):
"""
Too short sequences are simply removed. This could be tunedd.
"""
init_size = len(self)
indices = self.lengths > 5
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f'Remove {init_size - new_size} too short (<=5 tokens) sequences.')
def print_statistics(self):
"""
Print some statistics on the corpus. Only the master process.
"""
if not self.params.is_master:
return
logger.info(f'{len(self)} sequences')
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unkown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unkown} unknown tokens (covering {100*nb_unkown/data_len:.2f}% of the data)')
def select_data(self, a: int, b: int):
"""
Select a subportion of the data.
"""
n_sequences = len(self)
assert 0 <= a < b <= n_sequences, ValueError(f'`0 <= a < b <= n_sequences` is not met with a={a} and b={b}')
logger.info(f'Selecting sequences from {a} to {b} (excluded).')
self.token_ids = self.token_ids[a:b]
self.lengths = self.lengths[a:b]
self.check()
def split(self):
"""
Distributed training: split the data accross the processes.
"""
assert self.params.n_gpu > 1
logger.info('Splitting the data accross the processuses.')
n_seq = len(self)
n_seq_per_procesus = n_seq // self.params.world_size
a = n_seq_per_procesus * self.params.global_rank
b = a + n_seq_per_procesus
self.select_data(a=a, b=b)
def batch_sequences(self,
token_ids: List[List[int]],
lengths: List[int]):
"""
Do the padding and transform into torch.tensor.
"""
assert len(token_ids) == len(lengths)
# Max for paddings
max_seq_len_ = max(lengths)
# Pad token ids
pad_idx = self.params.special_tok_ids['pad_token']
tk_ = [list(t.astype(int)) + [pad_idx]*(max_seq_len_-len(t)) for t in token_ids]
assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths.astype(int)) # (bs)
return tk_t, lg_t
def get_batches_iterator(self,
batches):
"""
Return an iterator over batches.
"""
for sequences_ids in batches:
token_ids, lengths = self.batch_sequences(self.token_ids[sequences_ids],
self.lengths[sequences_ids])
yield (token_ids, lengths)
def get_iterator(self,
seed: int = None):
"""
Return a data iterator.
"""
rng = np.random.RandomState(seed)
n_sequences = len(self)
indices = np.arange(n_sequences)
if self.group_by_size:
indices = indices[np.argsort(self.lengths[indices], kind='mergesort')]
if self.tokens_per_batch == -1:
batches = np.array_split(indices, math.ceil(len(indices) * 1. / self.batch_size))
else:
assert self.tokens_per_batch > 0
batch_ids = np.cumsum(self.lengths[indices]) // self.tokens_per_batch
_, bounds = np.unique(batch_ids, return_index=True)
batches = [indices[bounds[i]:bounds[i + 1]] for i in range(len(bounds) - 1)]
if bounds[-1] < len(indices):
batches.append(indices[bounds[-1]:])
if self.shuffle:
rng.shuffle(batches)
assert n_sequences == sum([len(x) for x in batches])
assert self.lengths[indices].sum() == sum([self.lengths[x].sum() for x in batches])
return self.get_batches_iterator(batches=batches)
import os
import math
from tensorboardX import SummaryWriter
from tqdm import trange, tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_transformers import AdamW, WarmupLinearSchedule
from utils import logger
from dataset import Dataset
class Distiller:
def __init__(self,
params: dict,
dataloader: Dataset,
token_probs: torch.tensor,
student: nn.Module,
teacher: nn.Module):
logger.info('Initializing Distiller')
self.params = params
self.dump_path = params.dump_path
self.multi_gpu = params.multi_gpu
self.fp16 = params.fp16
self.student = student
self.teacher = teacher
self.dataloader = dataloader
if self.params.n_gpu > 1:
self.dataloader.split()
self.get_iterator(seed=params.seed)
self.temperature = params.temperature
assert self.temperature > 0.
self.alpha_ce = params.alpha_ce
self.alpha_mlm = params.alpha_mlm
self.alpha_mse = params.alpha_mse
assert self.alpha_ce >= 0.
assert self.alpha_mlm >= 0.
assert self.alpha_mse >= 0.
assert self.alpha_ce + self.alpha_mlm + self.alpha_mse > 0.
self.mlm_mask_prop = params.mlm_mask_prop
assert 0.0 <= self.mlm_mask_prop <= 1.0
assert params.word_mask + params.word_keep + params.word_rand == 1.0
self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
self.pred_probs = self.pred_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else self.pred_probs
self.token_probs = token_probs.to(f'cuda:{params.local_rank}') if params.n_gpu > 0 else token_probs
if self.fp16:
self.pred_probs = self.pred_probs.half()
self.token_probs = self.token_probs.half()
self.epoch = 0
self.n_iter = 0
self.n_total_iter = 0
self.n_sequences_epoch = 0
self.total_loss_epoch = 0
self.last_loss = 0
self.last_loss_ce = 0
self.last_loss_mlm = 0
self.last_loss_mse = 0
self.ce_loss_fct = nn.KLDivLoss(reduction='batchmean')
self.mlm_loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
self.mse_loss_fct = nn.MSELoss(reduction='sum')
logger.info('--- Initializing model optimizer')
assert params.gradient_accumulation_steps >= 1
self.num_steps_epoch = int(len(self.dataloader) / params.batch_size) + 1
num_train_optimization_steps = int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': params.weight_decay},
{'params': [p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad], 'weight_decay': 0.0}
]
logger.info("------ Number of trainable parameters (student): %i" % sum([p.numel() for p in self.student.parameters() if p.requires_grad]))
logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()]))
self.optimizer = AdamW(optimizer_grouped_parameters,
lr=params.learning_rate,
eps=params.adam_epsilon,
betas=(0.9, 0.98))
self.scheduler = WarmupLinearSchedule(self.optimizer,
warmup_steps=warmup_steps,
t_total=num_train_optimization_steps)
if self.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level")
self.student, self.optimizer = amp.initialize(self.student,
self.optimizer,
opt_level=self.params.fp16_opt_level)
self.teacher = self.teacher.half()
if self.multi_gpu:
if self.fp16:
from apex.parallel import DistributedDataParallel
logger.info("Using apex.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student)
else:
from torch.nn.parallel import DistributedDataParallel
logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student,
device_ids=[params.local_rank],
output_device=params.local_rank)
self.is_master = params.is_master
if self.is_master:
logger.info('--- Initializing Tensorboard')
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, 'log', 'train'))
self.tensorboard.add_text(tag='config', text_string=str(self.params), global_step=0)
def get_iterator(self,
seed: int = None):
"""
Initialize the data iterator.
Each process has its own data iterator (iterating on his own random portion of the dataset).
Input:
------
seed: `int` - The random seed.
"""
logger.info('--- Initializing Data Iterator')
self.data_iterator = self.dataloader.get_iterator(seed=seed)
def get_batch(self):
"""
Call the data iterator to output a new batch.
If the data iterator went through the whole dataset, create a new iterator.
"""
assert hasattr(self, 'data_iterator')
try:
x = next(self.data_iterator)
except StopIteration:
logger.warning('--- Went through the whole dataset. Creating new data iterator.')
self.data_iterator = self.dataloader.get_iterator()
x = next(self.data_iterator)
return x
def prepare_batch(self,
batch):
"""
Prepare the batch: from the token_ids and the lenghts, compute the attention mask and the masked label for MLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked languge modeling labels. There is a -1 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = (torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None])
bs, max_seq_len = token_ids.size()
mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
x_prob = self.token_probs[token_ids.flatten()]
n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item())
tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False)
pred_mask = torch.zeros(bs * max_seq_len, dtype=torch.uint8, device=token_ids.device)
pred_mask[tgt_ids] = 1
pred_mask = pred_mask.view(bs, max_seq_len)
pred_mask[token_ids == self.params.special_tok_ids['pad_token']] = 0
# mask a number of words == 0 [8] (faster with fp16)
if self.fp16:
n1 = pred_mask.sum().item()
if n1 > 8:
pred_mask = pred_mask.view(-1)
n2 = max(n1 % 8, 8 * (n1 // 8))
if n2 != n1:
pred_mask[torch.nonzero(pred_mask).view(-1)[:n1-n2]] = 0
pred_mask = pred_mask.view(bs, max_seq_len)
assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()
_token_ids_real = token_ids[pred_mask]
_token_ids_rand = _token_ids_real.clone().random_(self.params.vocab_size)
_token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids['mask_token'])
probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
_token_ids = _token_ids_mask * (probs == 0).long() + _token_ids_real * (probs == 1).long() + _token_ids_rand * (probs == 2).long()
token_ids = token_ids.masked_scatter(pred_mask, _token_ids)
mlm_labels[1-pred_mask] = -1
return token_ids, attn_mask, mlm_labels
def round_batch(self,
x: torch.tensor,
lengths: torch.tensor):
"""
For float16 only.
Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8.
Input:
------
x: `torch.tensor(bs, seq_length)` - The token ids.
lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch.
Output:
-------
x: `torch.tensor(new_bs, new_seq_length)` - The updated token ids.
lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths.
"""
if not self.fp16 or len(lengths) < 8:
return x, lengths
# number of sentences == 0 [8]
bs1 = len(lengths)
bs2 = 8 * (bs1 // 8)
assert bs2 > 0 and bs2 % 8 == 0
if bs1 != bs2:
idx = torch.randperm(bs1)[:bs2]
lengths = lengths[idx]
slen = lengths.max().item()
x = x[idx, :slen]
else:
idx = None
# sequence length == 0 [8]
ml1 = x.size(1)
if ml1 % 8 != 0:
pad = 8 - (ml1 % 8)
ml2 = ml1 + pad
pad_id = self.params.special_tok_ids['pad_token']
padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
x = torch.cat([x, padding_tensor], 1)
assert x.size() == (bs2, ml2)
assert x.size(0) % 8 == 0
assert x.size(1) % 8 == 0
return x, lengths
def train(self):
"""
The real training loop.
"""
if self.is_master: logger.info('Starting training')
self.student.train()
self.teacher.eval()
for _ in range(self.params.n_epoch):
if self.is_master: logger.info(f'--- Starting epoch {self.epoch}/{self.params.n_epoch-1}')
iter_bar = trange(self.num_steps_epoch, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
for __ in range(self.num_steps_epoch):
batch = self.get_batch()
if self.params.n_gpu > 0:
batch = tuple(t.to(f'cuda:{self.params.local_rank}') for t in batch)
token_ids, attn_mask, mlm_labels = self.prepare_batch(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, mlm_labels=mlm_labels)
iter_bar.update()
iter_bar.set_postfix({'Last_loss': f'{self.last_loss:.2f}',
'Avg_cum_loss': f'{self.total_loss_epoch/self.n_iter:.2f}'})
iter_bar.close()
if self.is_master: logger.info(f'--- Ending epoch {self.epoch}/{self.params.n_epoch-1}')
self.end_epoch()
if self.is_master: logger.info('Training is finished')
def step(self,
input_ids: torch.tensor,
attention_mask: torch.tensor,
mlm_labels: torch.tensor):
"""
One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
and possibly a parameter update (depending on the gradient accumulation).
Input:
------
input_ids: `torch.tensor(bs, seq_length)` - The token ids.
attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels.
"""
s_logits = self.student(input_ids=input_ids, attention_mask=attention_mask)[0] # (bs, seq_length, voc_size)
with torch.no_grad():
t_logits = self.teacher(input_ids=input_ids, attention_mask=attention_mask)[0] # (bs, seq_length, voc_size)
assert s_logits.size() == t_logits.size()
#https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
#https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
if self.params.restrict_ce_to_mask:
mask = (mlm_labels>-1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
else:
mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_lenth, voc_size)
s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = self.ce_loss_fct(F.log_softmax(s_logits_slct/self.temperature, dim=-1),
F.softmax(t_logits_slct/self.temperature, dim=-1)) * (self.temperature)**2
loss = self.alpha_ce*loss_ce
if self.alpha_mlm > 0.:
loss_mlm = self.mlm_loss_fct(s_logits.view(-1, s_logits.size(-1)), mlm_labels.view(-1))
loss += self.alpha_mlm * loss_mlm
if self.alpha_mse > 0.:
loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct)/s_logits_slct.size(0) # Reproducing batchmean reduction
loss += self.alpha_mse * loss_mse
self.total_loss_epoch += loss.item()
self.last_loss = loss.item()
self.last_loss_ce = loss_ce.item()
if self.alpha_mlm > 0.:
self.last_loss_mlm = loss_mlm.item()
if self.alpha_mse > 0.:
self.last_loss_mse = loss_mse.item()
self.optimize(loss)
self.n_sequences_epoch += input_ids.size(0)
def optimize(self,
loss):
"""
Normalization on the loss (gradient accumulation or distributed training), followed by
backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
Also update the metrics for tensorboard.
"""
# Check for NaN
if (loss != loss).data.any():
logger.error('NaN detected')
exit()
if self.multi_gpu:
loss = loss.mean()
if self.params.gradient_accumulation_steps > 1:
loss = loss / self.params.gradient_accumulation_steps
if self.fp16:
from apex import amp
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
self.iter()
if self.n_iter % self.params.gradient_accumulation_steps == 0:
if self.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
self.scheduler.step()
self.optimizer.step()
self.optimizer.zero_grad()
def iter(self):
"""
Update global counts, write to tensorboard and save checkpoint.
"""
self.n_iter += 1
self.n_total_iter += 1
if self.n_total_iter % self.params.log_interval == 0:
self.log_tensorboard()
if self.n_total_iter % self.params.checkpoint_interval == 0:
self.save_checkpoint()
def log_tensorboard(self):
"""
Log into tensorboard. Only by the master process.
"""
if not self.is_master:
return
for param_name, param in self.student.named_parameters():
self.tensorboard.add_scalar(tag='parameter_mean/' + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag='parameter_std/' + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter)
if param.grad is None:
continue
self.tensorboard.add_scalar(tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(),global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/cum_avg_loss_epoch", scalar_value=self.total_loss_epoch/self.n_iter, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter)
if self.alpha_mlm > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter)
if self.alpha_mse > 0.:
self.tensorboard.add_scalar(tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter)
self.tensorboard.add_scalar(tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter)
def end_epoch(self):
"""
Finally arrived at the end of epoch (full pass on dataset).
Do some tensorboard logging and checkpoint saving.
"""
logger.info(f'{self.n_sequences_epoch} sequences have been trained during this epoch.')
if self.is_master:
self.save_checkpoint(checkpoint_name=f'model_epoch_{self.epoch}.pth')
self.tensorboard.add_scalar(tag='epoch/loss', scalar_value=self.total_loss_epoch/self.n_iter, global_step=self.epoch)
self.epoch += 1
self.n_sequences_epoch = 0
self.n_iter = 0
self.total_loss_epoch = 0
def save_checkpoint(self,
checkpoint_name: str = 'checkpoint.pth'):
"""
Save the current state. Only by the master process.
"""
if not self.is_master:
return
mdl_to_save = self.student.module if hasattr(self.student, 'module') else self.student
mdl_to_save.config.save_pretrained(self.dump_path)
state_dict = mdl_to_save.state_dict()
torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))
import git
import json
import os
import socket
import torch
import numpy as np
import logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
def git_log(folder_path: str):
"""
Log commit info.
"""
repo = git.Repo(search_parent_directories=True)
repo_infos = {
'repo_id': str(repo),
'repo_sha': str(repo.head.object.hexsha),
'repo_branch': str(repo.active_branch)
}
with open(os.path.join(folder_path, 'git_log.json'), 'w') as f:
json.dump(repo_infos, f, indent=4)
def init_gpu_params(params):
"""
Handle single and multi-GPU / multi-node.
"""
if params.n_gpu <= 0:
params.local_rank = 0
params.master_port = -1
params.is_master = True
params.multi_gpu = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs')
if params.n_gpu > 1:
assert params.local_rank != -1
params.world_size = int(os.environ['WORLD_SIZE'])
params.n_gpu_per_node = int(os.environ['N_GPU_NODE'])
params.global_rank = int(os.environ['RANK'])
# number of nodes / node ID
params.n_nodes = params.world_size // params.n_gpu_per_node
params.node_id = params.global_rank // params.n_gpu_per_node
params.multi_gpu = True
assert params.n_nodes == int(os.environ['N_NODES'])
assert params.node_id == int(os.environ['NODE_RANK'])
# local job (single GPU)
else:
assert params.local_rank == -1
params.n_nodes = 1
params.node_id = 0
params.local_rank = 0
params.global_rank = 0
params.world_size = 1
params.n_gpu_per_node = 1
params.multi_gpu = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
params.is_master = params.node_id == 0 and params.local_rank == 0
params.multi_node = params.n_nodes > 1
# summary
PREFIX = f"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
logger.info(PREFIX + "Node ID : %i" % params.node_id)
logger.info(PREFIX + "Local rank : %i" % params.local_rank)
logger.info(PREFIX + "World size : %i" % params.world_size)
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node)
logger.info(PREFIX + "Master : %s" % str(params.is_master))
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node))
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu))
logger.info(PREFIX + "Hostname : %s" % socket.gethostname())
# set GPU device
torch.cuda.set_device(params.local_rank)
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed")
torch.distributed.init_process_group(
init_method='env://',
backend='nccl',
)
def set_seed(args):
"""
Set the random seed.
"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment