"vscode:/vscode.git/clone" did not exist on "44e9ddd7fe7a683994de81d1791b453cf7b0a54c"
Commit 183fedfe authored by thomwolf's avatar thomwolf
Browse files

fix doc on python2

parent 0e9825e2
......@@ -642,7 +642,7 @@ BERT_INPUTS_DOCSTRING = r"""
@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertModel(BertPreTrainedModel):
r"""
__doc__ = r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the last layer of the model.
......@@ -738,7 +738,7 @@ class BertModel(BertPreTrainedModel):
a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertForPreTraining(BertPreTrainedModel):
r"""
__doc__ = r"""
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
......@@ -814,7 +814,7 @@ class BertForPreTraining(BertPreTrainedModel):
@add_start_docstrings("""Bert Model transformer BERT model with a `language modeling` head on top. """,
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
r"""
__doc__ = r"""
**masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
......@@ -879,7 +879,7 @@ class BertForMaskedLM(BertPreTrainedModel):
@add_start_docstrings("""Bert Model transformer BERT model with a `next sentence prediction (classification)` head on top. """,
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertForNextSentencePrediction(BertPreTrainedModel):
r"""
__doc__ = r"""
**next_sentence_label**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
Indices should be in ``[0, 1]``.
......@@ -937,7 +937,7 @@ class BertForNextSentencePrediction(BertPreTrainedModel):
the pooled output) e.g. for GLUE tasks. """,
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertForSequenceClassification(BertPreTrainedModel):
r"""
__doc__ = r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels]``.
......@@ -1005,7 +1005,7 @@ class BertForSequenceClassification(BertPreTrainedModel):
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
BERT_START_DOCSTRING)
class BertForMultipleChoice(BertPreTrainedModel):
r"""
__doc__ = r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
......@@ -1110,7 +1110,7 @@ class BertForMultipleChoice(BertPreTrainedModel):
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
class BertForTokenClassification(BertPreTrainedModel):
r"""
__doc__ = r"""
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels]``.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment