Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
17ea43cf
Unverified
Commit
17ea43cf
authored
Sep 26, 2019
by
Thomas Wolf
Committed by
GitHub
Sep 26, 2019
Browse files
Merge pull request #1203 from huggingface/tf2
[2.0] TF 2.0 support
parents
4a233e5b
80bf868a
Changes
152
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1917 additions
and
60 deletions
+1917
-60
transformers/tests/modeling_tf_distilbert_test.py
transformers/tests/modeling_tf_distilbert_test.py
+222
-0
transformers/tests/modeling_tf_gpt2_test.py
transformers/tests/modeling_tf_gpt2_test.py
+232
-0
transformers/tests/modeling_tf_openai_gpt_test.py
transformers/tests/modeling_tf_openai_gpt_test.py
+231
-0
transformers/tests/modeling_tf_roberta_test.py
transformers/tests/modeling_tf_roberta_test.py
+246
-0
transformers/tests/modeling_tf_transfo_xl_test.py
transformers/tests/modeling_tf_transfo_xl_test.py
+217
-0
transformers/tests/modeling_tf_xlm_test.py
transformers/tests/modeling_tf_xlm_test.py
+264
-0
transformers/tests/modeling_tf_xlnet_test.py
transformers/tests/modeling_tf_xlnet_test.py
+302
-0
transformers/tests/modeling_transfo_xl_test.py
transformers/tests/modeling_transfo_xl_test.py
+9
-5
transformers/tests/modeling_xlm_test.py
transformers/tests/modeling_xlm_test.py
+49
-18
transformers/tests/modeling_xlnet_test.py
transformers/tests/modeling_xlnet_test.py
+10
-5
transformers/tests/optimization_test.py
transformers/tests/optimization_test.py
+11
-5
transformers/tests/tokenization_auto_test.py
transformers/tests/tokenization_auto_test.py
+4
-5
transformers/tests/tokenization_bert_test.py
transformers/tests/tokenization_bert_test.py
+3
-3
transformers/tests/tokenization_distilbert_test.py
transformers/tests/tokenization_distilbert_test.py
+7
-5
transformers/tests/tokenization_gpt2_test.py
transformers/tests/tokenization_gpt2_test.py
+3
-3
transformers/tests/tokenization_openai_test.py
transformers/tests/tokenization_openai_test.py
+1
-1
transformers/tests/tokenization_roberta_test.py
transformers/tests/tokenization_roberta_test.py
+5
-5
transformers/tests/tokenization_tests_commons.py
transformers/tests/tokenization_tests_commons.py
+89
-0
transformers/tests/tokenization_transfo_xl_test.py
transformers/tests/tokenization_transfo_xl_test.py
+10
-3
transformers/tests/tokenization_utils_test.py
transformers/tests/tokenization_utils_test.py
+2
-2
No files found.
transformers/tests/modeling_tf_distilbert_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
transformers
import
DistilBertConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_distilbert
import
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForSequenceClassification
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFDistilBertModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFDistilBertModel
,
TFDistilBertForMaskedLM
,
TFDistilBertForQuestionAnswering
,
TFDistilBertForSequenceClassification
)
if
is_tf_available
()
else
None
test_pruning
=
True
test_torchscript
=
True
test_resize_embeddings
=
True
test_head_masking
=
True
class
TFDistilBertModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
False
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
DistilBertConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
hidden_dim
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
dropout
=
self
.
hidden_dropout_prob
,
attention_dropout
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
initializer_range
=
self
.
initializer_range
)
return
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_distilbert_model
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
outputs
=
model
(
inputs
)
sequence_output
=
outputs
[
0
]
inputs
=
[
input_ids
,
input_mask
]
(
sequence_output
,)
=
model
(
inputs
)
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_distilbert_for_masked_lm
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertForMaskedLM
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
(
prediction_scores
,)
=
model
(
inputs
)
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_distilbert_for_question_answering
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFDistilBertForQuestionAnswering
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
start_logits
,
end_logits
=
model
(
inputs
)
result
=
{
"start_logits"
:
start_logits
.
numpy
(),
"end_logits"
:
end_logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
def
create_and_check_distilbert_for_sequence_classification
(
self
,
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
config
.
num_labels
=
self
.
num_labels
model
=
TFDistilBertForSequenceClassification
(
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
(
logits
,)
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_labels
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFDistilBertModelTest
.
TFDistilBertModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
DistilBertConfig
,
dim
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_distilbert_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_masked_lm
(
*
config_and_inputs
)
def
test_for_question_answering
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_question_answering
(
*
config_and_inputs
)
def
test_for_sequence_classification
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_distilbert_for_sequence_classification
(
*
config_and_inputs
)
# @pytest.mark.slow
# def test_model_from_pretrained(self):
# cache_dir = "/tmp/transformers_test/"
# for model_name in list(DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
# model = DistilBertModel.from_pretrained(model_name, cache_dir=cache_dir)
# shutil.rmtree(cache_dir)
# self.assertIsNotNone(model)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_gpt2_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
shutil
import
pytest
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
transformers
import
GPT2Config
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_gpt2
import
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
TFGPT2DoubleHeadsModel
,
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFGPT2ModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFGPT2Model
,
TFGPT2LMHeadModel
,
TFGPT2DoubleHeadsModel
)
if
is_tf_available
()
else
()
# all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel) if is_tf_available() else ()
class
TFGPT2ModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_token_type_ids
=
True
,
use_input_mask
=
True
,
use_labels
=
True
,
use_mc_token_ids
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_input_mask
=
use_input_mask
self
.
use_labels
=
use_labels
self
.
use_mc_token_ids
=
use_mc_token_ids
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
mc_token_ids
=
None
if
self
.
use_mc_token_ids
:
mc_token_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
num_choices
],
self
.
seq_length
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
GPT2Config
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions
=
self
.
max_position_embeddings
,
n_ctx
=
self
.
max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask
=
ids_tensor
([
self
.
num_hidden_layers
,
self
.
num_attention_heads
],
2
)
return
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_gpt2_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFGPT2Model
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
sequence_output
=
model
(
inputs
)[
0
]
inputs
=
[
input_ids
,
None
,
input_mask
]
# None is the input for 'past'
sequence_output
=
model
(
inputs
)[
0
]
sequence_output
=
model
(
input_ids
)[
0
]
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_gpt2_lm_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFGPT2LMHeadModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
=
model
(
inputs
)[
0
]
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_gpt2_double_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
*
args
):
model
=
TFGPT2DoubleHeadsModel
(
config
=
config
)
multiple_choice_inputs_ids
=
tf
.
tile
(
tf
.
expand_dims
(
input_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_input_mask
=
tf
.
tile
(
tf
.
expand_dims
(
input_mask
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_token_type_ids
=
tf
.
tile
(
tf
.
expand_dims
(
token_type_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
inputs
=
{
'input_ids'
:
multiple_choice_inputs_ids
,
'mc_token_ids'
:
mc_token_ids
,
'attention_mask'
:
multiple_choice_input_mask
,
'token_type_ids'
:
multiple_choice_token_type_ids
}
lm_logits
,
mc_logits
=
model
(
inputs
)[:
2
]
result
=
{
"lm_logits"
:
lm_logits
.
numpy
(),
"mc_logits"
:
mc_logits
.
numpy
()
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"lm_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"mc_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFGPT2ModelTest
.
TFGPT2ModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
GPT2Config
,
n_embd
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_gpt2_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_gpt2_model
(
*
config_and_inputs
)
def
test_gpt2_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_gpt2_lm_head
(
*
config_and_inputs
)
def
test_gpt2_double_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_gpt2_double_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_gpt2_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFGPT2Model
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_openai_gpt_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
shutil
import
pytest
import
sys
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
transformers
import
OpenAIGPTConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_openai
import
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
TFOpenAIGPTDoubleHeadsModel
,
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFOpenAIGPTModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFOpenAIGPTModel
,
TFOpenAIGPTLMHeadModel
,
TFOpenAIGPTDoubleHeadsModel
)
if
is_tf_available
()
else
()
class
TFOpenAIGPTModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_token_type_ids
=
True
,
use_input_mask
=
True
,
use_labels
=
True
,
use_mc_token_ids
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_input_mask
=
use_input_mask
self
.
use_labels
=
use_labels
self
.
use_mc_token_ids
=
use_mc_token_ids
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
mc_token_ids
=
None
if
self
.
use_mc_token_ids
:
mc_token_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
num_choices
],
self
.
seq_length
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
OpenAIGPTConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
n_embd
=
self
.
hidden_size
,
n_layer
=
self
.
num_hidden_layers
,
n_head
=
self
.
num_attention_heads
,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions
=
self
.
max_position_embeddings
,
n_ctx
=
self
.
max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask
=
ids_tensor
([
self
.
num_hidden_layers
,
self
.
num_attention_heads
],
2
)
return
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_openai_gpt_model
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFOpenAIGPTModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
sequence_output
=
model
(
inputs
)[
0
]
inputs
=
[
input_ids
,
input_mask
]
sequence_output
=
model
(
inputs
)[
0
]
sequence_output
=
model
(
input_ids
)[
0
]
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_openai_gpt_lm_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
*
args
):
model
=
TFOpenAIGPTLMHeadModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
prediction_scores
=
model
(
inputs
)[
0
]
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_openai_gpt_double_head
(
self
,
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
*
args
):
model
=
TFOpenAIGPTDoubleHeadsModel
(
config
=
config
)
multiple_choice_inputs_ids
=
tf
.
tile
(
tf
.
expand_dims
(
input_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_input_mask
=
tf
.
tile
(
tf
.
expand_dims
(
input_mask
,
1
),
(
1
,
self
.
num_choices
,
1
))
multiple_choice_token_type_ids
=
tf
.
tile
(
tf
.
expand_dims
(
token_type_ids
,
1
),
(
1
,
self
.
num_choices
,
1
))
inputs
=
{
'input_ids'
:
multiple_choice_inputs_ids
,
'mc_token_ids'
:
mc_token_ids
,
'attention_mask'
:
multiple_choice_input_mask
,
'token_type_ids'
:
multiple_choice_token_type_ids
}
lm_logits
,
mc_logits
=
model
(
inputs
)[:
2
]
result
=
{
"lm_logits"
:
lm_logits
.
numpy
(),
"mc_logits"
:
mc_logits
.
numpy
()
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"lm_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"mc_logits"
].
shape
),
[
self
.
batch_size
,
self
.
num_choices
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
input_mask
,
head_mask
,
token_type_ids
,
mc_token_ids
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFOpenAIGPTModelTest
.
TFOpenAIGPTModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
OpenAIGPTConfig
,
n_embd
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_openai_gpt_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_model
(
*
config_and_inputs
)
def
test_openai_gpt_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_lm_head
(
*
config_and_inputs
)
def
test_openai_gpt_double_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_openai_gpt_double_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFOpenAIGPTModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_roberta_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
shutil
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
transformers
import
RobertaConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
import
numpy
from
transformers.modeling_tf_roberta
import
(
TFRobertaModel
,
TFRobertaForMaskedLM
,
TFRobertaForSequenceClassification
,
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFRobertaModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFRobertaModel
,
TFRobertaForMaskedLM
,
TFRobertaForSequenceClassification
)
if
is_tf_available
()
else
()
class
TFRobertaModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_mask
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
intermediate_size
=
37
,
hidden_act
=
"gelu"
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_mask
=
use_input_mask
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
intermediate_size
=
intermediate_size
self
.
hidden_act
=
hidden_act
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
None
if
self
.
use_input_mask
:
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
vocab_size
=
2
)
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
sequence_labels
=
None
token_labels
=
None
choice_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
choice_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
num_choices
)
config
=
RobertaConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
hidden_size
=
self
.
hidden_size
,
num_hidden_layers
=
self
.
num_hidden_layers
,
num_attention_heads
=
self
.
num_attention_heads
,
intermediate_size
=
self
.
intermediate_size
,
hidden_act
=
self
.
hidden_act
,
hidden_dropout_prob
=
self
.
hidden_dropout_prob
,
attention_probs_dropout_prob
=
self
.
attention_probs_dropout_prob
,
max_position_embeddings
=
self
.
max_position_embeddings
,
type_vocab_size
=
self
.
type_vocab_size
,
initializer_range
=
self
.
initializer_range
)
return
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
def
create_and_check_roberta_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFRobertaModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
token_type_ids
}
sequence_output
=
model
(
inputs
)[
0
]
inputs
=
[
input_ids
,
input_mask
]
sequence_output
=
model
(
inputs
)[
0
]
sequence_output
=
model
(
input_ids
)[
0
]
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_roberta_for_masked_lm
(
self
,
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
):
model
=
TFRobertaForMaskedLM
(
config
=
config
)
prediction_scores
=
model
([
input_ids
,
input_mask
,
token_type_ids
])[
0
]
result
=
{
"prediction_scores"
:
prediction_scores
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"prediction_scores"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_mask
,
sequence_labels
,
token_labels
,
choice_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'attention_mask'
:
input_mask
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFRobertaModelTest
.
TFRobertaModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
RobertaConfig
,
hidden_size
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_roberta_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_roberta_model
(
*
config_and_inputs
)
def
test_for_masked_lm
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_roberta_for_masked_lm
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFRobertaModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
class
TFRobertaModelIntegrationTest
(
unittest
.
TestCase
):
@
pytest
.
mark
.
slow
def
test_inference_masked_lm
(
self
):
model
=
TFRobertaForMaskedLM
.
from_pretrained
(
'roberta-base'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
[
1
,
11
,
50265
]
self
.
assertEqual
(
list
(
output
.
numpy
().
shape
),
expected_shape
)
# compare the actual values for a slice.
expected_slice
=
tf
.
constant
(
[[[
33.8843
,
-
4.3107
,
22.7779
],
[
4.6533
,
-
2.8099
,
13.6252
],
[
1.8222
,
-
3.6898
,
8.8600
]]]
)
self
.
assertTrue
(
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
)
@
pytest
.
mark
.
slow
def
test_inference_no_head
(
self
):
model
=
TFRobertaModel
.
from_pretrained
(
'roberta-base'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
# compare the actual values for a slice.
expected_slice
=
tf
.
constant
(
[[[
-
0.0231
,
0.0782
,
0.0074
],
[
-
0.1854
,
0.0539
,
-
0.0174
],
[
0.0548
,
0.0799
,
0.1687
]]]
)
self
.
assertTrue
(
numpy
.
allclose
(
output
[:,
:
3
,
:
3
].
numpy
(),
expected_slice
.
numpy
(),
atol
=
1e-3
)
)
@
pytest
.
mark
.
slow
def
test_inference_classification_head
(
self
):
model
=
TFRobertaForSequenceClassification
.
from_pretrained
(
'roberta-large-mnli'
)
input_ids
=
tf
.
constant
([[
0
,
31414
,
232
,
328
,
740
,
1140
,
12695
,
69
,
46078
,
1588
,
2
]])
output
=
model
(
input_ids
)[
0
]
expected_shape
=
[
1
,
3
]
self
.
assertEqual
(
list
(
output
.
numpy
().
shape
),
expected_shape
)
expected_tensor
=
tf
.
constant
([[
-
0.9469
,
0.3913
,
0.5118
]])
self
.
assertTrue
(
numpy
.
allclose
(
output
.
numpy
(),
expected_tensor
.
numpy
(),
atol
=
1e-3
)
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_transfo_xl_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
random
import
shutil
import
pytest
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
transformers
import
TransfoXLConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_transfo_xl
import
(
TFTransfoXLModel
,
TFTransfoXLLMHeadModel
,
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
class
TFTransfoXLModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFTransfoXLModel
,
TFTransfoXLLMHeadModel
)
if
is_tf_available
()
else
()
test_pruning
=
False
test_torchscript
=
False
test_resize_embeddings
=
False
class
TFTransfoXLModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
mem_len
=
30
,
clamp_len
=
15
,
is_training
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
cutoffs
=
[
10
,
50
,
80
],
hidden_size
=
32
,
d_embed
=
32
,
num_attention_heads
=
4
,
d_head
=
8
,
d_inner
=
128
,
div_val
=
2
,
num_hidden_layers
=
5
,
scope
=
None
,
seed
=
1
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
mem_len
=
mem_len
self
.
key_len
=
seq_length
+
mem_len
self
.
clamp_len
=
clamp_len
self
.
is_training
=
is_training
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
cutoffs
=
cutoffs
self
.
hidden_size
=
hidden_size
self
.
d_embed
=
d_embed
self
.
num_attention_heads
=
num_attention_heads
self
.
d_head
=
d_head
self
.
d_inner
=
d_inner
self
.
div_val
=
div_val
self
.
num_hidden_layers
=
num_hidden_layers
self
.
scope
=
scope
self
.
seed
=
seed
def
prepare_config_and_inputs
(
self
):
input_ids_1
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_ids_2
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
lm_labels
=
None
if
self
.
use_labels
:
lm_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
config
=
TransfoXLConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
mem_len
=
self
.
mem_len
,
clamp_len
=
self
.
clamp_len
,
cutoffs
=
self
.
cutoffs
,
d_model
=
self
.
hidden_size
,
d_embed
=
self
.
d_embed
,
n_head
=
self
.
num_attention_heads
,
d_head
=
self
.
d_head
,
d_inner
=
self
.
d_inner
,
div_val
=
self
.
div_val
,
n_layer
=
self
.
num_hidden_layers
)
return
(
config
,
input_ids_1
,
input_ids_2
,
lm_labels
)
def
set_seed
(
self
):
random
.
seed
(
self
.
seed
)
tf
.
random
.
set_seed
(
self
.
seed
)
def
create_and_check_transfo_xl_model
(
self
,
config
,
input_ids_1
,
input_ids_2
,
lm_labels
):
model
=
TFTransfoXLModel
(
config
)
hidden_states_1
,
mems_1
=
model
(
input_ids_1
)
inputs
=
{
'input_ids'
:
input_ids_2
,
'mems'
:
mems_1
}
hidden_states_2
,
mems_2
=
model
(
inputs
)
result
=
{
"hidden_states_1"
:
hidden_states_1
.
numpy
(),
"mems_1"
:
[
mem
.
numpy
()
for
mem
in
mems_1
],
"hidden_states_2"
:
hidden_states_2
.
numpy
(),
"mems_2"
:
[
mem
.
numpy
()
for
mem
in
mems_2
],
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"hidden_states_1"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"hidden_states_2"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_1"
]),
[[
self
.
mem_len
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_2"
]),
[[
self
.
mem_len
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
create_and_check_transfo_xl_lm_head
(
self
,
config
,
input_ids_1
,
input_ids_2
,
lm_labels
):
model
=
TFTransfoXLLMHeadModel
(
config
)
lm_logits_1
,
mems_1
=
model
(
input_ids_1
)
inputs
=
{
'input_ids'
:
input_ids_1
,
'labels'
:
lm_labels
}
_
,
mems_1
=
model
(
inputs
)
lm_logits_2
,
mems_2
=
model
([
input_ids_2
,
mems_1
])
inputs
=
{
'input_ids'
:
input_ids_1
,
'mems'
:
mems_1
,
'labels'
:
lm_labels
}
_
,
mems_2
=
model
(
inputs
)
result
=
{
"mems_1"
:
[
mem
.
numpy
()
for
mem
in
mems_1
],
"lm_logits_1"
:
lm_logits_1
.
numpy
(),
"mems_2"
:
[
mem
.
numpy
()
for
mem
in
mems_2
],
"lm_logits_2"
:
lm_logits_2
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"lm_logits_1"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_1"
]),
[[
self
.
mem_len
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"lm_logits_2"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_2"
]),
[[
self
.
mem_len
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids_1
,
input_ids_2
,
lm_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids_1
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFTransfoXLModelTest
.
TFTransfoXLModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
TransfoXLConfig
,
d_embed
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_transfo_xl_model
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_transfo_xl_model
(
*
config_and_inputs
)
def
test_transfo_xl_lm_head
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_transfo_xl_lm_head
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFTransfoXLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_xlm_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
unittest
import
shutil
import
pytest
from
transformers
import
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers
import
(
XLMConfig
,
TFXLMModel
,
TFXLMWithLMHeadModel
,
TFXLMForSequenceClassification
,
TFXLMForQuestionAnsweringSimple
,
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
TFXLMModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFXLMModel
,
TFXLMWithLMHeadModel
,
TFXLMForSequenceClassification
,
TFXLMForQuestionAnsweringSimple
)
if
is_tf_available
()
else
()
class
TFXLMModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
is_training
=
True
,
use_input_lengths
=
True
,
use_token_type_ids
=
True
,
use_labels
=
True
,
gelu_activation
=
True
,
sinusoidal_embeddings
=
False
,
causal
=
False
,
asm
=
False
,
n_langs
=
2
,
vocab_size
=
99
,
n_special
=
0
,
hidden_size
=
32
,
num_hidden_layers
=
5
,
num_attention_heads
=
4
,
hidden_dropout_prob
=
0.1
,
attention_probs_dropout_prob
=
0.1
,
max_position_embeddings
=
512
,
type_vocab_size
=
16
,
type_sequence_label_size
=
2
,
initializer_range
=
0.02
,
num_labels
=
3
,
num_choices
=
4
,
summary_type
=
"last"
,
use_proj
=
True
,
scope
=
None
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
is_training
=
is_training
self
.
use_input_lengths
=
use_input_lengths
self
.
use_token_type_ids
=
use_token_type_ids
self
.
use_labels
=
use_labels
self
.
gelu_activation
=
gelu_activation
self
.
sinusoidal_embeddings
=
sinusoidal_embeddings
self
.
asm
=
asm
self
.
n_langs
=
n_langs
self
.
vocab_size
=
vocab_size
self
.
n_special
=
n_special
self
.
summary_type
=
summary_type
self
.
causal
=
causal
self
.
use_proj
=
use_proj
self
.
hidden_size
=
hidden_size
self
.
num_hidden_layers
=
num_hidden_layers
self
.
num_attention_heads
=
num_attention_heads
self
.
hidden_dropout_prob
=
hidden_dropout_prob
self
.
attention_probs_dropout_prob
=
attention_probs_dropout_prob
self
.
max_position_embeddings
=
max_position_embeddings
self
.
n_langs
=
n_langs
self
.
type_sequence_label_size
=
type_sequence_label_size
self
.
initializer_range
=
initializer_range
self
.
summary_type
=
summary_type
self
.
num_labels
=
num_labels
self
.
num_choices
=
num_choices
self
.
scope
=
scope
def
prepare_config_and_inputs
(
self
):
input_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
2
,
dtype
=
tf
.
float32
)
input_lengths
=
None
if
self
.
use_input_lengths
:
input_lengths
=
ids_tensor
([
self
.
batch_size
],
vocab_size
=
2
)
+
self
.
seq_length
-
2
# small variation of seq_length
token_type_ids
=
None
if
self
.
use_token_type_ids
:
token_type_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
n_langs
)
sequence_labels
=
None
token_labels
=
None
is_impossible_labels
=
None
if
self
.
use_labels
:
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
token_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
num_labels
)
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
,
dtype
=
tf
.
float32
)
config
=
XLMConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
n_special
=
self
.
n_special
,
emb_dim
=
self
.
hidden_size
,
n_layers
=
self
.
num_hidden_layers
,
n_heads
=
self
.
num_attention_heads
,
dropout
=
self
.
hidden_dropout_prob
,
attention_dropout
=
self
.
attention_probs_dropout_prob
,
gelu_activation
=
self
.
gelu_activation
,
sinusoidal_embeddings
=
self
.
sinusoidal_embeddings
,
asm
=
self
.
asm
,
causal
=
self
.
causal
,
n_langs
=
self
.
n_langs
,
max_position_embeddings
=
self
.
max_position_embeddings
,
initializer_range
=
self
.
initializer_range
,
summary_type
=
self
.
summary_type
,
use_proj
=
self
.
use_proj
)
return
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
def
create_and_check_xlm_model
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
TFXLMModel
(
config
=
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'lengths'
:
input_lengths
,
'langs'
:
token_type_ids
}
outputs
=
model
(
inputs
)
inputs
=
[
input_ids
,
input_mask
]
outputs
=
model
(
inputs
)
sequence_output
=
outputs
[
0
]
result
=
{
"sequence_output"
:
sequence_output
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"sequence_output"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
def
create_and_check_xlm_lm_head
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
TFXLMWithLMHeadModel
(
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'lengths'
:
input_lengths
,
'langs'
:
token_type_ids
}
outputs
=
model
(
inputs
)
logits
=
outputs
[
0
]
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_xlm_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
TFXLMForQuestionAnsweringSimple
(
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'lengths'
:
input_lengths
}
outputs
=
model
(
inputs
)
start_logits
,
end_logits
=
model
(
inputs
)
result
=
{
"start_logits"
:
start_logits
.
numpy
(),
"end_logits"
:
end_logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
def
create_and_check_xlm_sequence_classif
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
TFXLMForSequenceClassification
(
config
)
inputs
=
{
'input_ids'
:
input_ids
,
'lengths'
:
input_lengths
}
(
logits
,)
=
model
(
inputs
)
result
=
{
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
type_sequence_label_size
])
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids
,
'token_type_ids'
:
token_type_ids
,
'langs'
:
token_type_ids
,
'lengths'
:
input_lengths
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFXLMModelTest
.
TFXLMModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
XLMConfig
,
emb_dim
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_xlm_model
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_model
(
*
config_and_inputs
)
def
test_xlm_lm_head
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_lm_head
(
*
config_and_inputs
)
def
test_xlm_qa
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_qa
(
*
config_and_inputs
)
def
test_xlm_sequence_classif
(
self
):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_sequence_classif
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
transformers/tests/modeling_tf_xlnet_test.py
0 → 100644
View file @
17ea43cf
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
unittest
import
json
import
random
import
shutil
import
pytest
from
transformers
import
XLNetConfig
,
is_tf_available
if
is_tf_available
():
import
tensorflow
as
tf
from
transformers.modeling_tf_xlnet
import
(
TFXLNetModel
,
TFXLNetLMHeadModel
,
TFXLNetForSequenceClassification
,
TFXLNetForQuestionAnsweringSimple
,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require TensorFlow"
)
from
.modeling_tf_common_test
import
(
TFCommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
class
TFXLNetModelTest
(
TFCommonTestCases
.
TFCommonModelTester
):
all_model_classes
=
(
TFXLNetModel
,
TFXLNetLMHeadModel
,
TFXLNetForSequenceClassification
,
TFXLNetForQuestionAnsweringSimple
)
if
is_tf_available
()
else
()
test_pruning
=
False
class
TFXLNetModelTester
(
object
):
def
__init__
(
self
,
parent
,
batch_size
=
13
,
seq_length
=
7
,
mem_len
=
10
,
clamp_len
=-
1
,
reuse_len
=
15
,
is_training
=
True
,
use_labels
=
True
,
vocab_size
=
99
,
cutoffs
=
[
10
,
50
,
80
],
hidden_size
=
32
,
num_attention_heads
=
4
,
d_inner
=
128
,
num_hidden_layers
=
5
,
max_position_embeddings
=
10
,
type_sequence_label_size
=
2
,
untie_r
=
True
,
bi_data
=
False
,
same_length
=
False
,
initializer_range
=
0.05
,
seed
=
1
,
type_vocab_size
=
2
,
):
self
.
parent
=
parent
self
.
batch_size
=
batch_size
self
.
seq_length
=
seq_length
self
.
mem_len
=
mem_len
# self.key_len = seq_length + mem_len
self
.
clamp_len
=
clamp_len
self
.
reuse_len
=
reuse_len
self
.
is_training
=
is_training
self
.
use_labels
=
use_labels
self
.
vocab_size
=
vocab_size
self
.
cutoffs
=
cutoffs
self
.
hidden_size
=
hidden_size
self
.
num_attention_heads
=
num_attention_heads
self
.
d_inner
=
d_inner
self
.
num_hidden_layers
=
num_hidden_layers
self
.
max_position_embeddings
=
max_position_embeddings
self
.
bi_data
=
bi_data
self
.
untie_r
=
untie_r
self
.
same_length
=
same_length
self
.
initializer_range
=
initializer_range
self
.
seed
=
seed
self
.
type_vocab_size
=
type_vocab_size
self
.
type_sequence_label_size
=
type_sequence_label_size
def
prepare_config_and_inputs
(
self
):
input_ids_1
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
input_ids_2
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
segment_ids
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
type_vocab_size
)
input_mask
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
2
,
dtype
=
tf
.
float32
)
input_ids_q
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
+
1
],
self
.
vocab_size
)
perm_mask
=
tf
.
zeros
((
self
.
batch_size
,
self
.
seq_length
+
1
,
self
.
seq_length
),
dtype
=
tf
.
float32
)
perm_mask_last
=
tf
.
ones
((
self
.
batch_size
,
self
.
seq_length
+
1
,
1
),
dtype
=
tf
.
float32
)
perm_mask
=
tf
.
concat
([
perm_mask
,
perm_mask_last
],
axis
=-
1
)
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping
=
tf
.
zeros
((
self
.
batch_size
,
1
,
self
.
seq_length
),
dtype
=
tf
.
float32
)
target_mapping_last
=
tf
.
ones
((
self
.
batch_size
,
1
,
1
),
dtype
=
tf
.
float32
)
target_mapping
=
tf
.
concat
([
target_mapping
,
target_mapping_last
],
axis
=-
1
)
# target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels
=
None
lm_labels
=
None
is_impossible_labels
=
None
if
self
.
use_labels
:
lm_labels
=
ids_tensor
([
self
.
batch_size
,
self
.
seq_length
],
self
.
vocab_size
)
sequence_labels
=
ids_tensor
([
self
.
batch_size
],
self
.
type_sequence_label_size
)
is_impossible_labels
=
ids_tensor
([
self
.
batch_size
],
2
,
dtype
=
tf
.
float32
)
config
=
XLNetConfig
(
vocab_size_or_config_json_file
=
self
.
vocab_size
,
d_model
=
self
.
hidden_size
,
n_head
=
self
.
num_attention_heads
,
d_inner
=
self
.
d_inner
,
n_layer
=
self
.
num_hidden_layers
,
untie_r
=
self
.
untie_r
,
max_position_embeddings
=
self
.
max_position_embeddings
,
mem_len
=
self
.
mem_len
,
clamp_len
=
self
.
clamp_len
,
same_length
=
self
.
same_length
,
reuse_len
=
self
.
reuse_len
,
bi_data
=
self
.
bi_data
,
initializer_range
=
self
.
initializer_range
,
num_labels
=
self
.
type_sequence_label_size
)
return
(
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
)
def
set_seed
(
self
):
random
.
seed
(
self
.
seed
)
tf
.
random
.
set_seed
(
self
.
seed
)
def
create_and_check_xlnet_base_model
(
self
,
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
):
model
=
TFXLNetModel
(
config
)
inputs
=
{
'input_ids'
:
input_ids_1
,
'input_mask'
:
input_mask
,
'token_type_ids'
:
segment_ids
}
_
,
_
=
model
(
inputs
)
inputs
=
[
input_ids_1
,
input_mask
]
outputs
,
mems_1
=
model
(
inputs
)
result
=
{
"mems_1"
:
[
mem
.
numpy
()
for
mem
in
mems_1
],
"outputs"
:
outputs
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"outputs"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
hidden_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_1"
]),
[[
self
.
seq_length
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
create_and_check_xlnet_lm_head
(
self
,
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
):
model
=
TFXLNetLMHeadModel
(
config
)
inputs_1
=
{
'input_ids'
:
input_ids_1
,
'token_type_ids'
:
segment_ids
}
all_logits_1
,
mems_1
=
model
(
inputs_1
)
inputs_2
=
{
'input_ids'
:
input_ids_2
,
'mems'
:
mems_1
,
'token_type_ids'
:
segment_ids
}
all_logits_2
,
mems_2
=
model
(
inputs_2
)
inputs_3
=
{
'input_ids'
:
input_ids_q
,
'perm_mask'
:
perm_mask
,
'target_mapping'
:
target_mapping
}
logits
,
_
=
model
(
inputs_3
)
result
=
{
"mems_1"
:
[
mem
.
numpy
()
for
mem
in
mems_1
],
"all_logits_1"
:
all_logits_1
.
numpy
(),
"mems_2"
:
[
mem
.
numpy
()
for
mem
in
mems_2
],
"all_logits_2"
:
all_logits_2
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"all_logits_1"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_1"
]),
[[
self
.
seq_length
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
self
.
parent
.
assertListEqual
(
list
(
result
[
"all_logits_2"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_2"
]),
[[
self
.
mem_len
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
create_and_check_xlnet_qa
(
self
,
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
):
model
=
TFXLNetForQuestionAnsweringSimple
(
config
)
inputs
=
{
'input_ids'
:
input_ids_1
,
'attention_mask'
:
input_mask
,
'token_type_ids'
:
segment_ids
}
start_logits
,
end_logits
,
mems
=
model
(
inputs
)
result
=
{
"start_logits"
:
start_logits
.
numpy
(),
"end_logits"
:
end_logits
.
numpy
(),
"mems"
:
[
m
.
numpy
()
for
m
in
mems
],
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
shape
),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems"
]),
[[
self
.
seq_length
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
create_and_check_xlnet_sequence_classif
(
self
,
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
):
model
=
TFXLNetForSequenceClassification
(
config
)
logits
,
mems_1
=
model
(
input_ids_1
)
result
=
{
"mems_1"
:
[
mem
.
numpy
()
for
mem
in
mems_1
],
"logits"
:
logits
.
numpy
(),
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"logits"
].
shape
),
[
self
.
batch_size
,
self
.
type_sequence_label_size
])
self
.
parent
.
assertListEqual
(
list
(
list
(
mem
.
shape
)
for
mem
in
result
[
"mems_1"
]),
[[
self
.
seq_length
,
self
.
batch_size
,
self
.
hidden_size
]]
*
self
.
num_hidden_layers
)
def
prepare_config_and_inputs_for_common
(
self
):
config_and_inputs
=
self
.
prepare_config_and_inputs
()
(
config
,
input_ids_1
,
input_ids_2
,
input_ids_q
,
perm_mask
,
input_mask
,
target_mapping
,
segment_ids
,
lm_labels
,
sequence_labels
,
is_impossible_labels
)
=
config_and_inputs
inputs_dict
=
{
'input_ids'
:
input_ids_1
}
return
config
,
inputs_dict
def
setUp
(
self
):
self
.
model_tester
=
TFXLNetModelTest
.
TFXLNetModelTester
(
self
)
self
.
config_tester
=
ConfigTester
(
self
,
config_class
=
XLNetConfig
,
d_inner
=
37
)
def
test_config
(
self
):
self
.
config_tester
.
run_common_tests
()
def
test_xlnet_base_model
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlnet_base_model
(
*
config_and_inputs
)
def
test_xlnet_lm_head
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlnet_lm_head
(
*
config_and_inputs
)
def
test_xlnet_sequence_classif
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlnet_sequence_classif
(
*
config_and_inputs
)
def
test_xlnet_qa
(
self
):
self
.
model_tester
.
set_seed
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlnet_qa
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TFXLNetModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
self
.
assertIsNotNone
(
model
)
if
__name__
==
"__main__"
:
unittest
.
main
()
pytorch_
transformers/tests/modeling_transfo_xl_test.py
→
transformers/tests/modeling_transfo_xl_test.py
View file @
17ea43cf
...
@@ -21,17 +21,21 @@ import random
...
@@ -21,17 +21,21 @@ import random
import
shutil
import
shutil
import
pytest
import
pytest
import
torch
from
transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
if
is_torch_available
():
from
pytorch_transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
import
torch
from
transformers
import
(
TransfoXLConfig
,
TransfoXLModel
,
TransfoXLLMHeadModel
)
from
transformers.modeling_transfo_xl
import
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
class
TransfoXLModelTest
(
CommonTestCases
.
CommonModelTester
):
class
TransfoXLModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
TransfoXLModel
,
TransfoXLLMHeadModel
)
all_model_classes
=
(
TransfoXLModel
,
TransfoXLLMHeadModel
)
if
is_torch_available
()
else
()
test_pruning
=
False
test_pruning
=
False
test_torchscript
=
False
test_torchscript
=
False
test_resize_embeddings
=
False
test_resize_embeddings
=
False
...
@@ -202,7 +206,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
...
@@ -202,7 +206,7 @@ class TransfoXLModelTest(CommonTestCases.CommonModelTester):
@
pytest
.
mark
.
slow
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/
pytorch_
transformers_test/"
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
TransfoXLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
TransfoXLModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
...
...
pytorch_
transformers/tests/modeling_xlm_test.py
→
transformers/tests/modeling_xlm_test.py
View file @
17ea43cf
...
@@ -20,8 +20,14 @@ import unittest
...
@@ -20,8 +20,14 @@ import unittest
import
shutil
import
shutil
import
pytest
import
pytest
from
pytorch_transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
)
from
transformers
import
is_torch_available
from
pytorch_transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
if
is_torch_available
():
from
transformers
import
(
XLMConfig
,
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMForSequenceClassification
,
XLMForQuestionAnsweringSimple
)
from
transformers.modeling_xlm
import
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
...
@@ -29,9 +35,9 @@ from .configuration_common_test import ConfigTester
...
@@ -29,9 +35,9 @@ from .configuration_common_test import ConfigTester
class
XLMModelTest
(
CommonTestCases
.
CommonModelTester
):
class
XLMModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
XLMModel
,
XLMWithLMHeadModel
,
all_model_classes
=
(
XLMModel
,
XLMWithLMHeadModel
,
XLMForQuestionAnswering
,
XLMFor
QuestionAnswering
,
XLMForSequenceClassification
)
XLMFor
SequenceClassification
,
XLMForQuestionAnsweringSimple
)
if
is_torch_available
()
else
()
# , XLMForSequenceClassification, XLMForTokenClassification),
class
XLMModelTester
(
object
):
class
XLMModelTester
(
object
):
...
@@ -174,12 +180,36 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
...
@@ -174,12 +180,36 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
[
self
.
batch_size
,
self
.
seq_length
,
self
.
vocab_size
])
def
create_and_check_xlm_simple_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
XLMForQuestionAnsweringSimple
(
config
)
model
.
eval
()
outputs
=
model
(
input_ids
)
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
)
loss
,
start_logits
,
end_logits
=
outputs
result
=
{
"loss"
:
loss
,
"start_logits"
:
start_logits
,
"end_logits"
:
end_logits
,
}
self
.
parent
.
assertListEqual
(
list
(
result
[
"start_logits"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
parent
.
assertListEqual
(
list
(
result
[
"end_logits"
].
size
()),
[
self
.
batch_size
,
self
.
seq_length
])
self
.
check_loss_output
(
result
)
def
create_and_check_xlm_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
def
create_and_check_xlm_qa
(
self
,
config
,
input_ids
,
token_type_ids
,
input_lengths
,
sequence_labels
,
token_labels
,
is_impossible_labels
,
input_mask
):
model
=
XLMForQuestionAnswering
(
config
)
model
=
XLMForQuestionAnswering
(
config
)
model
.
eval
()
model
.
eval
()
outputs
=
model
(
input_ids
)
outputs
=
model
(
input_ids
)
start_top_log_probs
,
start_top_index
,
end_top_log_probs
,
end_top_index
,
cls_logits
,
mems
=
outputs
start_top_log_probs
,
start_top_index
,
end_top_log_probs
,
end_top_index
,
cls_logits
=
outputs
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
outputs
=
model
(
input_ids
,
start_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
end_positions
=
sequence_labels
,
...
@@ -266,24 +296,25 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
...
@@ -266,24 +296,25 @@ class XLMModelTest(CommonTestCases.CommonModelTester):
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_model
(
*
config_and_inputs
)
self
.
model_tester
.
create_and_check_xlm_model
(
*
config_and_inputs
)
# config_and_inputs = tester.prepare_config_and_inputs()
def
test_xlm_lm_head
(
self
):
# tester.create_and_check_xlm_for_masked_lm(*config_and_inputs)
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_lm_head
(
*
config_and_inputs
)
# config_and_inputs = tester.prepare_config_and_inputs()
# tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)
# config_and_inputs = tester.prepare_config_and_inputs()
def
test_xlm_simple_qa
(
self
):
# tester.create_and_check_xlm_for_question_answering(*config_and_inputs)
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_simple_qa
(
*
config_and_inputs
)
# config_and_inputs = tester.prepare_config_and_inputs()
def
test_xlm_qa
(
self
):
# tester.create_and_check_xlm_for_sequence_classification(*config_and_inputs)
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_qa
(
*
config_and_inputs
)
# config_and_inputs = tester.prepare_config_and_inputs()
def
test_xlm_sequence_classif
(
self
):
# tester.create_and_check_xlm_for_token_classification(*config_and_inputs)
config_and_inputs
=
self
.
model_tester
.
prepare_config_and_inputs
()
self
.
model_tester
.
create_and_check_xlm_sequence_classif
(
*
config_and_inputs
)
@
pytest
.
mark
.
slow
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/
pytorch_
transformers_test/"
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
XLM_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
XLMModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
...
...
pytorch_
transformers/tests/modeling_xlnet_test.py
→
transformers/tests/modeling_xlnet_test.py
View file @
17ea43cf
...
@@ -23,10 +23,15 @@ import random
...
@@ -23,10 +23,15 @@ import random
import
shutil
import
shutil
import
pytest
import
pytest
import
torch
from
transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
if
is_torch_available
():
from
pytorch_transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
import
torch
from
transformers
import
(
XLNetConfig
,
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
from
transformers.modeling_xlnet
import
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.modeling_common_test
import
(
CommonTestCases
,
ids_tensor
)
from
.configuration_common_test
import
ConfigTester
from
.configuration_common_test
import
ConfigTester
...
@@ -34,7 +39,7 @@ from .configuration_common_test import ConfigTester
...
@@ -34,7 +39,7 @@ from .configuration_common_test import ConfigTester
class
XLNetModelTest
(
CommonTestCases
.
CommonModelTester
):
class
XLNetModelTest
(
CommonTestCases
.
CommonModelTester
):
all_model_classes
=
(
XLNetModel
,
XLNetLMHeadModel
,
all_model_classes
=
(
XLNetModel
,
XLNetLMHeadModel
,
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
XLNetForSequenceClassification
,
XLNetForQuestionAnswering
)
if
is_torch_available
()
else
()
test_pruning
=
False
test_pruning
=
False
class
XLNetModelTester
(
object
):
class
XLNetModelTester
(
object
):
...
@@ -312,7 +317,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
...
@@ -312,7 +317,7 @@ class XLNetModelTest(CommonTestCases.CommonModelTester):
@
pytest
.
mark
.
slow
@
pytest
.
mark
.
slow
def
test_model_from_pretrained
(
self
):
def
test_model_from_pretrained
(
self
):
cache_dir
=
"/tmp/
pytorch_
transformers_test/"
cache_dir
=
"/tmp/transformers_test/"
for
model_name
in
list
(
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
.
keys
())[:
1
]:
model
=
XLNetModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
model
=
XLNetModel
.
from_pretrained
(
model_name
,
cache_dir
=
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
shutil
.
rmtree
(
cache_dir
)
...
...
pytorch_
transformers/tests/optimization_test.py
→
transformers/tests/optimization_test.py
View file @
17ea43cf
...
@@ -18,11 +18,17 @@ from __future__ import print_function
...
@@ -18,11 +18,17 @@ from __future__ import print_function
import
unittest
import
unittest
import
os
import
os
import
pytest
import
torch
from
transformers
import
is_
torch
_available
from
pytorch_transformers
import
(
AdamW
,
ConstantLRSchedule
,
WarmupConstantSchedule
,
if
is_torch_available
():
WarmupCosineSchedule
,
WarmupCosineWithHardRestartsSchedule
,
WarmupLinearSchedule
)
import
torch
from
transformers
import
(
AdamW
,
ConstantLRSchedule
,
WarmupConstantSchedule
,
WarmupCosineSchedule
,
WarmupCosineWithHardRestartsSchedule
,
WarmupLinearSchedule
)
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
from
.tokenization_tests_commons
import
TemporaryDirectory
from
.tokenization_tests_commons
import
TemporaryDirectory
...
@@ -71,8 +77,8 @@ class OptimizationTest(unittest.TestCase):
...
@@ -71,8 +77,8 @@ class OptimizationTest(unittest.TestCase):
class
ScheduleInitTest
(
unittest
.
TestCase
):
class
ScheduleInitTest
(
unittest
.
TestCase
):
m
=
torch
.
nn
.
Linear
(
50
,
50
)
m
=
torch
.
nn
.
Linear
(
50
,
50
)
if
is_torch_available
()
else
None
optimizer
=
AdamW
(
m
.
parameters
(),
lr
=
10.
)
optimizer
=
AdamW
(
m
.
parameters
(),
lr
=
10.
)
if
is_torch_available
()
else
None
num_steps
=
10
num_steps
=
10
def
assertListAlmostEqual
(
self
,
list1
,
list2
,
tol
):
def
assertListAlmostEqual
(
self
,
list1
,
list2
,
tol
):
...
...
pytorch_
transformers/tests/tokenization_auto_test.py
→
transformers/tests/tokenization_auto_test.py
View file @
17ea43cf
...
@@ -21,21 +21,20 @@ import shutil
...
@@ -21,21 +21,20 @@ import shutil
import
pytest
import
pytest
import
logging
import
logging
from
pytorch_transformers
import
AutoTokenizer
,
BertTokenizer
,
AutoTokenizer
,
GPT2Tokenizer
from
transformers
import
AutoTokenizer
,
BertTokenizer
,
AutoTokenizer
,
GPT2Tokenizer
from
pytorch_transformers.modeling_bert
import
BERT_PRETRAINED_MODEL_ARCHIVE_MAP
from
transformers
import
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP
,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP
from
pytorch_transformers.modeling_gpt2
import
GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
class
AutoTokenizerTest
(
unittest
.
TestCase
):
class
AutoTokenizerTest
(
unittest
.
TestCase
):
def
test_tokenizer_from_pretrained
(
self
):
def
test_tokenizer_from_pretrained
(
self
):
logging
.
basicConfig
(
level
=
logging
.
INFO
)
logging
.
basicConfig
(
level
=
logging
.
INFO
)
for
model_name
in
list
(
BERT_PRETRAINED_
MODEL
_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
BERT_PRETRAINED_
CONFIG
_ARCHIVE_MAP
.
keys
())[:
1
]:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsInstance
(
tokenizer
,
BertTokenizer
)
self
.
assertIsInstance
(
tokenizer
,
BertTokenizer
)
self
.
assertGreater
(
len
(
tokenizer
),
0
)
self
.
assertGreater
(
len
(
tokenizer
),
0
)
for
model_name
in
list
(
GPT2_PRETRAINED_
MODEL
_ARCHIVE_MAP
.
keys
())[:
1
]:
for
model_name
in
list
(
GPT2_PRETRAINED_
CONFIG
_ARCHIVE_MAP
.
keys
())[:
1
]:
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
tokenizer
=
AutoTokenizer
.
from_pretrained
(
model_name
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsNotNone
(
tokenizer
)
self
.
assertIsInstance
(
tokenizer
,
GPT2Tokenizer
)
self
.
assertIsInstance
(
tokenizer
,
GPT2Tokenizer
)
...
...
pytorch_
transformers/tests/tokenization_bert_test.py
→
transformers/tests/tokenization_bert_test.py
View file @
17ea43cf
...
@@ -18,7 +18,7 @@ import os
...
@@ -18,7 +18,7 @@ import os
import
unittest
import
unittest
from
io
import
open
from
io
import
open
from
pytorch_
transformers.tokenization_bert
import
(
BasicTokenizer
,
from
transformers.tokenization_bert
import
(
BasicTokenizer
,
BertTokenizer
,
BertTokenizer
,
WordpieceTokenizer
,
WordpieceTokenizer
,
_is_control
,
_is_punctuation
,
_is_control
,
_is_punctuation
,
...
@@ -131,8 +131,8 @@ class BertTokenizationTest(CommonTestCases.CommonTokenizerTester):
...
@@ -131,8 +131,8 @@ class BertTokenizationTest(CommonTestCases.CommonTokenizerTester):
text
=
tokenizer
.
encode
(
"sequence builders"
)
text
=
tokenizer
.
encode
(
"sequence builders"
)
text_2
=
tokenizer
.
encode
(
"multi-sequence build"
)
text_2
=
tokenizer
.
encode
(
"multi-sequence build"
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_se
nt
ence
(
text
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_se
qu
ence
(
text
)
encoded_pair
=
tokenizer
.
add_special_tokens_se
nt
ence
s
_pair
(
text
,
text_2
)
encoded_pair
=
tokenizer
.
add_special_tokens_se
qu
ence_pair
(
text
,
text_2
)
assert
encoded_sentence
==
[
101
]
+
text
+
[
102
]
assert
encoded_sentence
==
[
101
]
+
text
+
[
102
]
assert
encoded_pair
==
[
101
]
+
text
+
[
102
]
+
text_2
+
[
102
]
assert
encoded_pair
==
[
101
]
+
text
+
[
102
]
+
text_2
+
[
102
]
...
...
pytorch_
transformers/tests/tokenization_dilbert_test.py
→
transformers/tests/tokenization_di
sti
lbert_test.py
View file @
17ea43cf
...
@@ -18,7 +18,7 @@ import os
...
@@ -18,7 +18,7 @@ import os
import
unittest
import
unittest
from
io
import
open
from
io
import
open
from
pytorch_
transformers.tokenization_distilbert
import
(
DistilBertTokenizer
)
from
transformers.tokenization_distilbert
import
(
DistilBertTokenizer
)
from
.tokenization_tests_commons
import
CommonTestCases
from
.tokenization_tests_commons
import
CommonTestCases
from
.tokenization_bert_test
import
BertTokenizationTest
from
.tokenization_bert_test
import
BertTokenizationTest
...
@@ -36,11 +36,13 @@ class DistilBertTokenizationTest(BertTokenizationTest):
...
@@ -36,11 +36,13 @@ class DistilBertTokenizationTest(BertTokenizationTest):
text
=
tokenizer
.
encode
(
"sequence builders"
)
text
=
tokenizer
.
encode
(
"sequence builders"
)
text_2
=
tokenizer
.
encode
(
"multi-sequence build"
)
text_2
=
tokenizer
.
encode
(
"multi-sequence build"
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_sentence
(
text
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_sequence
(
text
)
encoded_pair
=
tokenizer
.
add_special_tokens_sentences_pair
(
text
,
text_2
)
encoded_pair
=
tokenizer
.
add_special_tokens_sequence_pair
(
text
,
text_2
)
assert
encoded_sentence
==
[
tokenizer
.
cls_token_id
]
+
text
+
[
tokenizer
.
sep_token_id
]
assert
encoded_pair
==
[
tokenizer
.
cls_token_id
]
+
text
+
[
tokenizer
.
sep_token_id
]
+
\
text_2
+
[
tokenizer
.
sep_token_id
]
assert
encoded_sentence
==
[
101
]
+
text
+
[
102
]
assert
encoded_pair
==
[
101
]
+
text
+
[
102
]
+
text_2
+
[
102
]
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
pytorch_
transformers/tests/tokenization_gpt2_test.py
→
transformers/tests/tokenization_gpt2_test.py
View file @
17ea43cf
...
@@ -19,7 +19,7 @@ import unittest
...
@@ -19,7 +19,7 @@ import unittest
import
json
import
json
from
io
import
open
from
io
import
open
from
pytorch_
transformers.tokenization_gpt2
import
GPT2Tokenizer
,
VOCAB_FILES_NAMES
from
transformers.tokenization_gpt2
import
GPT2Tokenizer
,
VOCAB_FILES_NAMES
from
.tokenization_tests_commons
import
CommonTestCases
from
.tokenization_tests_commons
import
CommonTestCases
...
@@ -52,14 +52,14 @@ class GPT2TokenizationTest(CommonTestCases.CommonTokenizerTester):
...
@@ -52,14 +52,14 @@ class GPT2TokenizationTest(CommonTestCases.CommonTokenizerTester):
def
get_input_output_texts
(
self
):
def
get_input_output_texts
(
self
):
input_text
=
u
"lower newer"
input_text
=
u
"lower newer"
output_text
=
u
"
lower newer"
output_text
=
u
"lower newer"
return
input_text
,
output_text
return
input_text
,
output_text
def
test_full_tokenizer
(
self
):
def
test_full_tokenizer
(
self
):
tokenizer
=
GPT2Tokenizer
(
self
.
vocab_file
,
self
.
merges_file
,
**
self
.
special_tokens_map
)
tokenizer
=
GPT2Tokenizer
(
self
.
vocab_file
,
self
.
merges_file
,
**
self
.
special_tokens_map
)
text
=
"lower newer"
text
=
"lower newer"
bpe_tokens
=
[
"
\u0120
low"
,
"er"
,
"
\u0120
"
,
"n"
,
"e"
,
"w"
,
"er"
]
bpe_tokens
=
[
"
\u0120
low"
,
"er"
,
"
\u0120
"
,
"n"
,
"e"
,
"w"
,
"er"
]
tokens
=
tokenizer
.
tokenize
(
text
)
tokens
=
tokenizer
.
tokenize
(
text
,
add_prefix_space
=
True
)
self
.
assertListEqual
(
tokens
,
bpe_tokens
)
self
.
assertListEqual
(
tokens
,
bpe_tokens
)
input_tokens
=
tokens
+
[
tokenizer
.
unk_token
]
input_tokens
=
tokens
+
[
tokenizer
.
unk_token
]
...
...
pytorch_
transformers/tests/tokenization_openai_test.py
→
transformers/tests/tokenization_openai_test.py
View file @
17ea43cf
...
@@ -18,7 +18,7 @@ import os
...
@@ -18,7 +18,7 @@ import os
import
unittest
import
unittest
import
json
import
json
from
pytorch_
transformers.tokenization_openai
import
OpenAIGPTTokenizer
,
VOCAB_FILES_NAMES
from
transformers.tokenization_openai
import
OpenAIGPTTokenizer
,
VOCAB_FILES_NAMES
from
.tokenization_tests_commons
import
CommonTestCases
from
.tokenization_tests_commons
import
CommonTestCases
...
...
pytorch_
transformers/tests/tokenization_roberta_test.py
→
transformers/tests/tokenization_roberta_test.py
View file @
17ea43cf
...
@@ -19,7 +19,7 @@ import json
...
@@ -19,7 +19,7 @@ import json
import
unittest
import
unittest
from
io
import
open
from
io
import
open
from
pytorch_
transformers.tokenization_roberta
import
RobertaTokenizer
,
VOCAB_FILES_NAMES
from
transformers.tokenization_roberta
import
RobertaTokenizer
,
VOCAB_FILES_NAMES
from
.tokenization_tests_commons
import
CommonTestCases
from
.tokenization_tests_commons
import
CommonTestCases
...
@@ -51,14 +51,14 @@ class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
...
@@ -51,14 +51,14 @@ class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
def
get_input_output_texts
(
self
):
def
get_input_output_texts
(
self
):
input_text
=
u
"lower newer"
input_text
=
u
"lower newer"
output_text
=
u
"
lower newer"
output_text
=
u
"lower newer"
return
input_text
,
output_text
return
input_text
,
output_text
def
test_full_tokenizer
(
self
):
def
test_full_tokenizer
(
self
):
tokenizer
=
RobertaTokenizer
(
self
.
vocab_file
,
self
.
merges_file
,
**
self
.
special_tokens_map
)
tokenizer
=
RobertaTokenizer
(
self
.
vocab_file
,
self
.
merges_file
,
**
self
.
special_tokens_map
)
text
=
"lower newer"
text
=
"lower newer"
bpe_tokens
=
[
"
\u0120
low"
,
"er"
,
"
\u0120
"
,
"n"
,
"e"
,
"w"
,
"er"
]
bpe_tokens
=
[
"
\u0120
low"
,
"er"
,
"
\u0120
"
,
"n"
,
"e"
,
"w"
,
"er"
]
tokens
=
tokenizer
.
tokenize
(
text
)
tokens
=
tokenizer
.
tokenize
(
text
,
add_prefix_space
=
True
)
self
.
assertListEqual
(
tokens
,
bpe_tokens
)
self
.
assertListEqual
(
tokens
,
bpe_tokens
)
input_tokens
=
tokens
+
[
tokenizer
.
unk_token
]
input_tokens
=
tokens
+
[
tokenizer
.
unk_token
]
...
@@ -87,8 +87,8 @@ class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
...
@@ -87,8 +87,8 @@ class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
encoded_text_from_decode
=
tokenizer
.
encode
(
"sequence builders"
,
add_special_tokens
=
True
)
encoded_text_from_decode
=
tokenizer
.
encode
(
"sequence builders"
,
add_special_tokens
=
True
)
encoded_pair_from_decode
=
tokenizer
.
encode
(
"sequence builders"
,
"multi-sequence build"
,
add_special_tokens
=
True
)
encoded_pair_from_decode
=
tokenizer
.
encode
(
"sequence builders"
,
"multi-sequence build"
,
add_special_tokens
=
True
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_se
nt
ence
(
text
)
encoded_sentence
=
tokenizer
.
add_special_tokens_single_se
qu
ence
(
text
)
encoded_pair
=
tokenizer
.
add_special_tokens_se
nt
ence
s
_pair
(
text
,
text_2
)
encoded_pair
=
tokenizer
.
add_special_tokens_se
qu
ence_pair
(
text
,
text_2
)
assert
encoded_sentence
==
encoded_text_from_decode
assert
encoded_sentence
==
encoded_text_from_decode
assert
encoded_pair
==
encoded_pair_from_decode
assert
encoded_pair
==
encoded_pair_from_decode
...
...
pytorch_
transformers/tests/tokenization_tests_commons.py
→
transformers/tests/tokenization_tests_commons.py
View file @
17ea43cf
...
@@ -186,3 +186,92 @@ class CommonTestCases:
...
@@ -186,3 +186,92 @@ class CommonTestCases:
for
weights_list_2
in
weights_lists_2
:
for
weights_list_2
in
weights_lists_2
:
self
.
assertListEqual
(
weights_list
,
weights_list_2
)
self
.
assertListEqual
(
weights_list
,
weights_list_2
)
def
test_mask_output
(
self
):
if
sys
.
version_info
<=
(
3
,
0
):
return
tokenizer
=
self
.
get_tokenizer
()
if
tokenizer
.
add_special_tokens_sequence_pair
.
__qualname__
.
split
(
'.'
)[
0
]
!=
"PreTrainedTokenizer"
:
seq_0
=
"Test this method."
seq_1
=
"With these inputs."
information
=
tokenizer
.
encode_plus
(
seq_0
,
seq_1
,
add_special_tokens
=
True
)
sequences
,
mask
=
information
[
"input_ids"
],
information
[
"token_type_ids"
]
assert
len
(
sequences
)
==
len
(
mask
)
def
test_number_of_added_tokens
(
self
):
tokenizer
=
self
.
get_tokenizer
()
seq_0
=
"Test this method."
seq_1
=
"With these inputs."
sequences
=
tokenizer
.
encode
(
seq_0
,
seq_1
)
attached_sequences
=
tokenizer
.
encode
(
seq_0
,
seq_1
,
add_special_tokens
=
True
)
# Method is implemented (e.g. not GPT-2)
if
len
(
attached_sequences
)
!=
2
:
assert
tokenizer
.
num_added_tokens
(
pair
=
True
)
==
len
(
attached_sequences
)
-
len
(
sequences
)
def
test_maximum_encoding_length_single_input
(
self
):
tokenizer
=
self
.
get_tokenizer
()
seq_0
=
"This is a sentence to be encoded."
stride
=
2
sequence
=
tokenizer
.
encode
(
seq_0
)
num_added_tokens
=
tokenizer
.
num_added_tokens
()
total_length
=
len
(
sequence
)
+
num_added_tokens
information
=
tokenizer
.
encode_plus
(
seq_0
,
max_length
=
total_length
-
2
,
add_special_tokens
=
True
,
stride
=
stride
)
truncated_sequence
=
information
[
"input_ids"
]
overflowing_tokens
=
information
[
"overflowing_tokens"
]
assert
len
(
overflowing_tokens
)
==
2
+
stride
assert
overflowing_tokens
==
sequence
[
-
(
2
+
stride
):]
assert
len
(
truncated_sequence
)
==
total_length
-
2
assert
truncated_sequence
==
tokenizer
.
add_special_tokens_single_sequence
(
sequence
[:
-
2
])
def
test_maximum_encoding_length_pair_input
(
self
):
tokenizer
=
self
.
get_tokenizer
()
seq_0
=
"This is a sentence to be encoded."
seq_1
=
"This is another sentence to be encoded."
stride
=
2
sequence_0_no_special_tokens
=
tokenizer
.
encode
(
seq_0
)
sequence_1_no_special_tokens
=
tokenizer
.
encode
(
seq_1
)
sequence
=
tokenizer
.
encode
(
seq_0
,
seq_1
,
add_special_tokens
=
True
)
truncated_second_sequence
=
tokenizer
.
add_special_tokens_sequence_pair
(
tokenizer
.
encode
(
seq_0
),
tokenizer
.
encode
(
seq_1
)[:
-
2
]
)
information
=
tokenizer
.
encode_plus
(
seq_0
,
seq_1
,
max_length
=
len
(
sequence
)
-
2
,
add_special_tokens
=
True
,
stride
=
stride
,
truncate_first_sequence
=
False
)
information_first_truncated
=
tokenizer
.
encode_plus
(
seq_0
,
seq_1
,
max_length
=
len
(
sequence
)
-
2
,
add_special_tokens
=
True
,
stride
=
stride
,
truncate_first_sequence
=
True
)
truncated_sequence
=
information
[
"input_ids"
]
overflowing_tokens
=
information
[
"overflowing_tokens"
]
overflowing_tokens_first_truncated
=
information_first_truncated
[
"overflowing_tokens"
]
assert
len
(
overflowing_tokens
)
==
2
+
stride
assert
overflowing_tokens
==
sequence_1_no_special_tokens
[
-
(
2
+
stride
):]
assert
overflowing_tokens_first_truncated
==
sequence_0_no_special_tokens
[
-
(
2
+
stride
):]
assert
len
(
truncated_sequence
)
==
len
(
sequence
)
-
2
assert
truncated_sequence
==
truncated_second_sequence
def
test_encode_input_type
(
self
):
tokenizer
=
self
.
get_tokenizer
()
sequence
=
"Let's encode this sequence"
tokens
=
tokenizer
.
tokenize
(
sequence
)
input_ids
=
tokenizer
.
convert_tokens_to_ids
(
tokens
)
formatted_input
=
tokenizer
.
encode
(
sequence
,
add_special_tokens
=
True
)
assert
tokenizer
.
encode
(
tokens
,
add_special_tokens
=
True
)
==
formatted_input
assert
tokenizer
.
encode
(
input_ids
,
add_special_tokens
=
True
)
==
formatted_input
pytorch_
transformers/tests/tokenization_transfo_xl_test.py
→
transformers/tests/tokenization_transfo_xl_test.py
View file @
17ea43cf
...
@@ -16,15 +16,22 @@ from __future__ import absolute_import, division, print_function, unicode_litera
...
@@ -16,15 +16,22 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import
os
import
os
import
unittest
import
unittest
import
pytest
from
io
import
open
from
io
import
open
from
pytorch_
transformers
.tokenization_transfo_xl
import
TransfoXLTokenizer
,
VOCAB_FILES_NAMES
from
transformers
import
is_torch_available
from
.
tokenization_tests_commons
import
CommonTestCases
if
is_torch_available
():
import
torch
from
transformers.tokenization_transfo_xl
import
TransfoXLTokenizer
,
VOCAB_FILES_NAMES
else
:
pytestmark
=
pytest
.
mark
.
skip
(
"Require Torch"
)
# TODO: untangle Transfo-XL tokenizer from torch.load and torch.save
from
.tokenization_tests_commons
import
CommonTestCases
class
TransfoXLTokenizationTest
(
CommonTestCases
.
CommonTokenizerTester
):
class
TransfoXLTokenizationTest
(
CommonTestCases
.
CommonTokenizerTester
):
tokenizer_class
=
TransfoXLTokenizer
tokenizer_class
=
TransfoXLTokenizer
if
is_torch_available
()
else
None
def
setUp
(
self
):
def
setUp
(
self
):
super
(
TransfoXLTokenizationTest
,
self
).
setUp
()
super
(
TransfoXLTokenizationTest
,
self
).
setUp
()
...
...
pytorch_
transformers/tests/tokenization_utils_test.py
→
transformers/tests/tokenization_utils_test.py
View file @
17ea43cf
...
@@ -19,8 +19,8 @@ from __future__ import print_function
...
@@ -19,8 +19,8 @@ from __future__ import print_function
import
unittest
import
unittest
import
six
import
six
from
pytorch_
transformers
import
PreTrainedTokenizer
from
transformers
import
PreTrainedTokenizer
from
pytorch_
transformers.tokenization_gpt2
import
GPT2Tokenizer
from
transformers.tokenization_gpt2
import
GPT2Tokenizer
class
TokenizerUtilsTest
(
unittest
.
TestCase
):
class
TokenizerUtilsTest
(
unittest
.
TestCase
):
def
check_tokenizer_from_pretrained
(
self
,
tokenizer_class
):
def
check_tokenizer_from_pretrained
(
self
,
tokenizer_class
):
...
...
Prev
1
…
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment