Commit 158e82e0 authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Sort imports with isort.

This is the result of:

    $ isort --recursive examples templates transformers utils hubconf.py setup.py
parent bc1715c1
......@@ -18,15 +18,15 @@ from __future__ import absolute_import, division, print_function
import argparse
import json
import logging
from io import open
import torch
import numpy
import torch
from transformers import CONFIG_NAME, WEIGHTS_NAME
from transformers.tokenization_xlm import VOCAB_FILES_NAMES
import logging
logging.basicConfig(level=logging.INFO)
......
......@@ -14,24 +14,25 @@
# limitations under the License.
"""Convert BERT checkpoint."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import, division, print_function
import os
import argparse
import logging
import os
import torch
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
XLNetConfig,
XLNetLMHeadModel,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
GLUE_TASKS_NUM_LABELS = {
"cola": 2,
"mnli": 3,
......@@ -44,7 +45,6 @@ GLUE_TASKS_NUM_LABELS = {
"wnli": 2,
}
import logging
logging.basicConfig(level=logging.INFO)
......
from .metrics import is_sklearn_available
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
DataProcessor,
SquadFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadV1Processor,
SquadV2Processor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
from .processors import glue_output_modes, glue_processors, glue_tasks_num_labels, glue_convert_examples_to_features
from .processors import squad_convert_examples_to_features, SquadExample, SquadV1Processor, SquadV2Processor
from .processors import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
from .metrics import is_sklearn_available
if is_sklearn_available():
from .metrics import glue_compute_metrics, xnli_compute_metrics
......@@ -15,8 +15,9 @@
# limitations under the License.
import csv
import sys
import logging
import sys
logger = logging.getLogger(__name__)
......
......@@ -8,17 +8,19 @@ that a question is unanswerable.
"""
import collections
import json
import logging
import math
import collections
import re
import string
from io import open
from tqdm import tqdm
import string
import re
from transformers.tokenization_bert import BasicTokenizer, whitespace_tokenize
logger = logging.getLogger(__name__)
......
from .utils import InputExample, InputFeatures, DataProcessor, SingleSentenceClassificationProcessor
from .glue import glue_output_modes, glue_processors, glue_tasks_num_labels, glue_convert_examples_to_features
from .squad import squad_convert_examples_to_features, SquadFeatures, SquadExample, SquadV1Processor, SquadV2Processor
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
......@@ -18,8 +18,9 @@
import logging
import os
from .utils import DataProcessor, InputExample, InputFeatures
from ...file_utils import is_tf_available
from .utils import DataProcessor, InputExample, InputFeatures
if is_tf_available():
import tensorflow as tf
......
from tqdm import tqdm
import collections
import json
import logging
import os
import json
import numpy as np
from multiprocessing import Pool
from multiprocessing import cpu_count
from functools import partial
from multiprocessing import Pool, cpu_count
import numpy as np
from tqdm import tqdm
from ...file_utils import is_tf_available, is_torch_available
from ...tokenization_bert import BasicTokenizer, whitespace_tokenize
from .utils import DataProcessor, InputExample, InputFeatures
from ...file_utils import is_tf_available, is_torch_available
if is_torch_available():
import torch
......
......@@ -14,14 +14,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import sys
import copy
import csv
import json
import logging
import sys
from ...file_utils import is_tf_available, is_torch_available
logger = logging.getLogger(__name__)
......
......@@ -22,6 +22,7 @@ import os
from .utils import DataProcessor, InputExample
logger = logging.getLogger(__name__)
......
......@@ -5,26 +5,27 @@ Copyright by the AllenNLP authors.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import sys
import fnmatch
import json
import logging
import os
import six
import sys
import tempfile
import fnmatch
from contextlib import contextmanager
from functools import partial, wraps
from hashlib import sha256
from io import open
import boto3
import requests
import six
from botocore.config import Config
from botocore.exceptions import ClientError
import requests
from filelock import FileLock
from tqdm.auto import tqdm
from contextlib import contextmanager
from . import __version__
from filelock import FileLock
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
......
......@@ -22,6 +22,7 @@ import six
from requests.exceptions import HTTPError
from tqdm import tqdm
ENDPOINT = "https://huggingface.co"
......
......@@ -23,15 +23,14 @@ import os
from io import open
from .configuration_auto import ALL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .file_utils import (
CONFIG_NAME,
MODEL_CARD_NAME,
WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
WEIGHTS_NAME,
cached_path,
is_remote_url,
hf_bucket_url,
is_remote_url,
)
......
......@@ -14,17 +14,21 @@
# limitations under the License.
"""PyTorch ALBERT model. """
import os
import math
import logging
import math
import os
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_albert import AlbertConfig
from transformers.modeling_bert import BertEmbeddings, BertSelfAttention, prune_linear_layer, ACT2FN
from transformers.modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer
from transformers.modeling_utils import PreTrainedModel
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
......
......@@ -29,80 +29,78 @@ from .configuration_auto import (
RobertaConfig,
TransfoXLConfig,
XLMConfig,
XLNetConfig,
XLMRobertaConfig,
XLNetConfig,
)
from .file_utils import add_start_docstrings
from .modeling_albert import (
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
AlbertForMaskedLM,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertModel,
)
from .modeling_bert import (
BertModel,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
BertForMaskedLM,
BertForSequenceClassification,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
)
from .modeling_openai import OpenAIGPTModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_gpt2 import GPT2Model, GPT2LMHeadModel, GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_ctrl import CTRLModel, CTRLLMHeadModel, CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_transfo_xl import TransfoXLModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_xlnet import (
XLNetModel,
XLNetLMHeadModel,
XLNetForSequenceClassification,
XLNetForQuestionAnswering,
XLNetForTokenClassification,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
)
from .modeling_xlm import (
XLMModel,
XLMWithLMHeadModel,
XLMForSequenceClassification,
XLMForQuestionAnswering,
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
BertModel,
)
from .modeling_roberta import (
RobertaModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaForTokenClassification,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
from .modeling_camembert import (
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
CamembertForMaskedLM,
CamembertForMultipleChoice,
CamembertForSequenceClassification,
CamembertForTokenClassification,
CamembertModel,
)
from .modeling_ctrl import CTRL_PRETRAINED_MODEL_ARCHIVE_MAP, CTRLLMHeadModel, CTRLModel
from .modeling_distilbert import (
DistilBertModel,
DistilBertForQuestionAnswering,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
DistilBertModel,
)
from .modeling_camembert import (
CamembertModel,
CamembertForMaskedLM,
CamembertForSequenceClassification,
CamembertForMultipleChoice,
CamembertForTokenClassification,
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
from .modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_MAP, GPT2LMHeadModel, GPT2Model
from .modeling_openai import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP, OpenAIGPTLMHeadModel, OpenAIGPTModel
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
)
from .modeling_albert import (
AlbertModel,
AlbertForMaskedLM,
AlbertForSequenceClassification,
AlbertForQuestionAnswering,
ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP,
from .modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP, T5Model, T5WithLMHeadModel
from .modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP, TransfoXLLMHeadModel, TransfoXLModel
from .modeling_utils import PreTrainedModel, SequenceSummary
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMForQuestionAnswering,
XLMForSequenceClassification,
XLMModel,
XLMWithLMHeadModel,
)
from .modeling_t5 import T5Model, T5WithLMHeadModel, T5_PRETRAINED_MODEL_ARCHIVE_MAP
from .modeling_xlm_roberta import (
XLMRobertaModel,
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMRobertaForMaskedLM,
XLMRobertaForSequenceClassification,
XLMRobertaForMultipleChoice,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
XLMRobertaModel,
)
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
)
from .modeling_utils import PreTrainedModel, SequenceSummary
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
......
......@@ -26,9 +26,10 @@ import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_bert import BertConfig
from .file_utils import add_start_docstrings
from .modeling_utils import PreTrainedModel, prune_linear_layer
logger = logging.getLogger(__name__)
......
......@@ -19,15 +19,16 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import logging
from .configuration_camembert import CamembertConfig
from .file_utils import add_start_docstrings
from .modeling_roberta import (
RobertaModel,
RobertaForMaskedLM,
RobertaForSequenceClassification,
RobertaForMultipleChoice,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
)
from .configuration_camembert import CamembertConfig
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
......
......@@ -24,15 +24,17 @@ import math
import os
import sys
from io import open
import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_ctrl import CTRLConfig
from .file_utils import add_start_docstrings
from .modeling_utils import Conv1D, PreTrainedModel, SequenceSummary, prune_conv1d_layer
logger = logging.getLogger(__name__)
......
......@@ -18,25 +18,23 @@
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import itertools
import json
import logging
import math
import copy
import sys
from io import open
import itertools
import numpy as np
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_distilbert import DistilBertConfig
from .file_utils import add_start_docstrings
from .modeling_utils import PreTrainedModel, prune_linear_layer
import logging
logger = logging.getLogger(__name__)
......
......@@ -26,6 +26,7 @@ from tqdm import trange
from .modeling_auto import AutoModel, AutoModelWithLMHead
logger = logging.getLogger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment