"git@developer.sourcefind.cn:chenpangpang/transformers.git" did not exist on "3b44aa935a4d8f1b0e93a23070d97be6b9c9506b"
Commit 158e82e0 authored by Aymeric Augustin's avatar Aymeric Augustin
Browse files

Sort imports with isort.

This is the result of:

    $ isort --recursive examples templates transformers utils hubconf.py setup.py
parent bc1715c1
...@@ -21,15 +21,23 @@ from __future__ import absolute_import, division, print_function, unicode_litera ...@@ -21,15 +21,23 @@ from __future__ import absolute_import, division, print_function, unicode_litera
import argparse import argparse
import logging import logging
import torch
import numpy as np import numpy as np
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer from transformers import (
from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer CTRLLMHeadModel,
from transformers import XLNetLMHeadModel, XLNetTokenizer CTRLTokenizer,
from transformers import TransfoXLLMHeadModel, TransfoXLTokenizer GPT2LMHeadModel,
from transformers import CTRLLMHeadModel, CTRLTokenizer GPT2Tokenizer,
from transformers import XLMWithLMHeadModel, XLMTokenizer OpenAIGPTLMHeadModel,
OpenAIGPTTokenizer,
TransfoXLLMHeadModel,
TransfoXLTokenizer,
XLMTokenizer,
XLMWithLMHeadModel,
XLNetLMHeadModel,
XLNetTokenizer,
)
logging.basicConfig( logging.basicConfig(
......
...@@ -19,54 +19,54 @@ from __future__ import absolute_import, division, print_function ...@@ -19,54 +19,54 @@ from __future__ import absolute_import, division, print_function
import argparse import argparse
import glob import glob
import json
import logging import logging
import os import os
import random import random
import json
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW,
AlbertConfig,
AlbertForSequenceClassification,
AlbertTokenizer,
BertConfig, BertConfig,
BertForSequenceClassification, BertForSequenceClassification,
BertTokenizer, BertTokenizer,
DistilBertConfig,
DistilBertForSequenceClassification,
DistilBertTokenizer,
RobertaConfig, RobertaConfig,
RobertaForSequenceClassification, RobertaForSequenceClassification,
RobertaTokenizer, RobertaTokenizer,
XLMConfig, XLMConfig,
XLMForSequenceClassification, XLMForSequenceClassification,
XLMRobertaConfig,
XLMRobertaForSequenceClassification,
XLMRobertaTokenizer,
XLMTokenizer, XLMTokenizer,
XLNetConfig, XLNetConfig,
XLNetForSequenceClassification, XLNetForSequenceClassification,
XLNetTokenizer, XLNetTokenizer,
DistilBertConfig, get_linear_schedule_with_warmup,
DistilBertForSequenceClassification,
DistilBertTokenizer,
AlbertConfig,
AlbertForSequenceClassification,
AlbertTokenizer,
XLMRobertaConfig,
XLMRobertaForSequenceClassification,
XLMRobertaTokenizer,
) )
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import glue_compute_metrics as compute_metrics from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes as output_modes from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -32,23 +32,22 @@ import shutil ...@@ -32,23 +32,22 @@ import shutil
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW, AdamW,
get_linear_schedule_with_warmup,
BertConfig, BertConfig,
BertForMaskedLM, BertForMaskedLM,
BertTokenizer, BertTokenizer,
CamembertConfig,
CamembertForMaskedLM,
CamembertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPT2Config, GPT2Config,
GPT2LMHeadModel, GPT2LMHeadModel,
GPT2Tokenizer, GPT2Tokenizer,
...@@ -58,15 +57,16 @@ from transformers import ( ...@@ -58,15 +57,16 @@ from transformers import (
RobertaConfig, RobertaConfig,
RobertaForMaskedLM, RobertaForMaskedLM,
RobertaTokenizer, RobertaTokenizer,
DistilBertConfig, get_linear_schedule_with_warmup,
DistilBertForMaskedLM,
DistilBertTokenizer,
CamembertConfig,
CamembertForMaskedLM,
CamembertTokenizer,
) )
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -23,35 +23,34 @@ import logging ...@@ -23,35 +23,34 @@ import logging
import os import os
import random import random
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW,
BertConfig, BertConfig,
BertForMultipleChoice, BertForMultipleChoice,
BertTokenizer, BertTokenizer,
XLNetConfig,
XLNetForMultipleChoice,
XLNetTokenizer,
RobertaConfig, RobertaConfig,
RobertaForMultipleChoice, RobertaForMultipleChoice,
RobertaTokenizer, RobertaTokenizer,
XLNetConfig,
XLNetForMultipleChoice,
XLNetTokenizer,
get_linear_schedule_with_warmup,
) )
from utils_multiple_choice import convert_examples_to_features, processors
from transformers import AdamW, get_linear_schedule_with_warmup
from utils_multiple_choice import convert_examples_to_features, processors try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -25,20 +25,35 @@ import random ...@@ -25,20 +25,35 @@ import random
import numpy as np import numpy as np
import torch import torch
from seqeval.metrics import precision_score, recall_score, f1_score
from tensorboardX import SummaryWriter from tensorboardX import SummaryWriter
from torch.nn import CrossEntropyLoss from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange from tqdm import tqdm, trange
from seqeval.metrics import f1_score, precision_score, recall_score
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForTokenClassification,
BertTokenizer,
CamembertConfig,
CamembertForTokenClassification,
CamembertTokenizer,
DistilBertConfig,
DistilBertForTokenClassification,
DistilBertTokenizer,
RobertaConfig,
RobertaForTokenClassification,
RobertaTokenizer,
XLMRobertaConfig,
XLMRobertaForTokenClassification,
XLMRobertaTokenizer,
get_linear_schedule_with_warmup,
)
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import WEIGHTS_NAME, BertConfig, BertForTokenClassification, BertTokenizer
from transformers import RobertaConfig, RobertaForTokenClassification, RobertaTokenizer
from transformers import DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer
from transformers import CamembertConfig, CamembertForTokenClassification, CamembertTokenizer
from transformers import XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -16,57 +16,57 @@ ...@@ -16,57 +16,57 @@
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" """ Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
from __future__ import absolute_import, division, print_function from __future__ import absolute_import, division, print_function
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
from transformers.data.metrics.squad_metrics import (
compute_predictions_logits,
compute_predictions_log_probs,
squad_evaluate,
)
import argparse import argparse
import glob
import logging import logging
import os import os
import random import random
import glob
import timeit import timeit
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW,
AlbertConfig,
AlbertForQuestionAnswering,
AlbertTokenizer,
BertConfig, BertConfig,
BertForQuestionAnswering, BertForQuestionAnswering,
BertTokenizer, BertTokenizer,
DistilBertConfig,
DistilBertForQuestionAnswering,
DistilBertTokenizer,
RobertaConfig,
RobertaForQuestionAnswering, RobertaForQuestionAnswering,
RobertaTokenizer, RobertaTokenizer,
RobertaConfig,
XLMConfig, XLMConfig,
XLMForQuestionAnswering, XLMForQuestionAnswering,
XLMTokenizer, XLMTokenizer,
XLNetConfig, XLNetConfig,
XLNetForQuestionAnswering, XLNetForQuestionAnswering,
XLNetTokenizer, XLNetTokenizer,
DistilBertConfig, get_linear_schedule_with_warmup,
DistilBertForQuestionAnswering, squad_convert_examples_to_features,
DistilBertTokenizer,
AlbertConfig,
AlbertForQuestionAnswering,
AlbertTokenizer,
XLMConfig,
XLMForQuestionAnswering,
XLMTokenizer,
) )
from transformers.data.metrics.squad_metrics import (
compute_predictions_log_probs,
compute_predictions_logits,
squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
import os import os
import tensorflow as tf import tensorflow as tf
import tensorflow_datasets import tensorflow_datasets
from transformers import ( from transformers import (
BertConfig,
BertForSequenceClassification,
BertTokenizer, BertTokenizer,
TFBertForSequenceClassification, TFBertForSequenceClassification,
BertConfig,
glue_convert_examples_to_features, glue_convert_examples_to_features,
BertForSequenceClassification,
glue_processors, glue_processors,
) )
# script parameters # script parameters
BATCH_SIZE = 32 BATCH_SIZE = 32
EVAL_BATCH_SIZE = BATCH_SIZE * 2 EVAL_BATCH_SIZE = BATCH_SIZE * 2
......
# coding=utf-8 # coding=utf-8
import _pickle as pickle
import collections
import datetime import datetime
import os
import math
import glob import glob
import math
import os
import re import re
import tensorflow as tf
import collections
import numpy as np import numpy as np
import tensorflow as tf
from absl import app, flags, logging
from fastprogress import master_bar, progress_bar
from seqeval import metrics from seqeval import metrics
import _pickle as pickle from transformers import (
from absl import logging TF2_WEIGHTS_NAME,
from transformers import TF2_WEIGHTS_NAME, BertConfig, BertTokenizer, TFBertForTokenClassification BertConfig,
from transformers import RobertaConfig, RobertaTokenizer, TFRobertaForTokenClassification BertTokenizer,
from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForTokenClassification DistilBertConfig,
from transformers import create_optimizer, GradientAccumulator DistilBertTokenizer,
GradientAccumulator,
RobertaConfig,
RobertaTokenizer,
TFBertForTokenClassification,
TFDistilBertForTokenClassification,
TFRobertaForTokenClassification,
create_optimizer,
)
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
from fastprogress import master_bar, progress_bar
from absl import flags
from absl import app
ALL_MODELS = sum( ALL_MODELS = sum(
......
...@@ -28,34 +28,33 @@ import numpy as np ...@@ -28,34 +28,33 @@ import numpy as np
import torch import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW,
BertConfig, BertConfig,
BertForSequenceClassification, BertForSequenceClassification,
BertTokenizer, BertTokenizer,
XLMConfig,
XLMForSequenceClassification,
XLMTokenizer,
DistilBertConfig, DistilBertConfig,
DistilBertForSequenceClassification, DistilBertForSequenceClassification,
DistilBertTokenizer, DistilBertTokenizer,
XLMConfig,
XLMForSequenceClassification,
XLMTokenizer,
get_linear_schedule_with_warmup,
) )
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import xnli_compute_metrics as compute_metrics from transformers import xnli_compute_metrics as compute_metrics
from transformers import xnli_output_modes as output_modes from transformers import xnli_output_modes as output_modes
from transformers import xnli_processors as processors from transformers import xnli_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
...@@ -20,13 +20,13 @@ the model within the original codebase to be able to only save its `state_dict`. ...@@ -20,13 +20,13 @@ the model within the original codebase to be able to only save its `state_dict`.
""" """
import argparse import argparse
from collections import namedtuple
import logging import logging
from collections import namedtuple
import torch import torch
from models.model_builder import AbsSummarizer # The authors' implementation
from model_bertabs import BertAbsSummarizer from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer from transformers import BertTokenizer
......
...@@ -27,9 +27,8 @@ import torch ...@@ -27,9 +27,8 @@ import torch
from torch import nn from torch import nn
from torch.nn.init import xavier_uniform_ from torch.nn.init import xavier_uniform_
from transformers import BertModel, BertConfig, PreTrainedModel
from configuration_bertabs import BertAbsConfig from configuration_bertabs import BertAbsConfig
from transformers import BertConfig, BertModel, PreTrainedModel
MAX_SIZE = 5000 MAX_SIZE = 5000
......
#! /usr/bin/python3 #! /usr/bin/python3
import argparse import argparse
from collections import namedtuple
import logging import logging
import os import os
import sys import sys
from collections import namedtuple
import torch import torch
from torch.utils.data import DataLoader, SequentialSampler from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm from tqdm import tqdm
from transformers import BertTokenizer
from modeling_bertabs import BertAbs, build_predictor from modeling_bertabs import BertAbs, build_predictor
from transformers import BertTokenizer
from utils_summarization import ( from utils_summarization import (
SummarizationDataset, SummarizationDataset,
encode_for_summarization,
build_mask, build_mask,
fit_to_block_size,
compute_token_type_ids, compute_token_type_ids,
encode_for_summarization,
fit_to_block_size,
) )
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.basicConfig(stream=sys.stdout, level=logging.INFO)
......
from collections import deque
import os import os
from collections import deque
import torch import torch
from torch.utils.data import Dataset from torch.utils.data import Dataset
......
...@@ -17,12 +17,7 @@ import unittest ...@@ -17,12 +17,7 @@ import unittest
import numpy as np import numpy as np
import torch import torch
from utils_summarization import ( from utils_summarization import build_mask, compute_token_type_ids, fit_to_block_size, process_story
compute_token_type_ids,
fit_to_block_size,
build_mask,
process_story,
)
class SummarizationDataProcessingTest(unittest.TestCase): class SummarizationDataProcessingTest(unittest.TestCase):
......
...@@ -12,14 +12,17 @@ ...@@ -12,14 +12,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import absolute_import from __future__ import absolute_import, division, print_function
from __future__ import division
from __future__ import print_function
import sys
import unittest
import argparse import argparse
import logging import logging
import sys
import unittest
import run_generation
import run_glue
import run_squad
try: try:
# python 3.4+ can use builtin unittest.mock instead of mock package # python 3.4+ can use builtin unittest.mock instead of mock package
...@@ -27,9 +30,6 @@ try: ...@@ -27,9 +30,6 @@ try:
except ImportError: except ImportError:
from mock import patch from mock import patch
import run_glue
import run_squad
import run_generation
logging.basicConfig(level=logging.DEBUG) logging.basicConfig(level=logging.DEBUG)
......
...@@ -17,16 +17,17 @@ ...@@ -17,16 +17,17 @@
from __future__ import absolute_import, division, print_function from __future__ import absolute_import, division, print_function
import csv
import glob
import json
import logging import logging
import os import os
import sys import sys
from io import open from io import open
import json
import csv
import glob
import tqdm
from typing import List from typing import List
import tqdm
from transformers import PreTrainedTokenizer from transformers import PreTrainedTokenizer
......
...@@ -21,6 +21,7 @@ import logging ...@@ -21,6 +21,7 @@ import logging
import os import os
from io import open from io import open
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
from transformers import ( from transformers import (
AutoTokenizer,
AutoConfig, AutoConfig,
AutoModel, AutoModel,
AutoModelWithLMHead,
AutoModelForSequenceClassification,
AutoModelForQuestionAnswering, AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
AutoTokenizer,
) )
from transformers.file_utils import add_start_docstrings from transformers.file_utils import add_start_docstrings
dependencies = ["torch", "tqdm", "boto3", "requests", "regex", "sentencepiece", "sacremoses"] dependencies = ["torch", "tqdm", "boto3", "requests", "regex", "sentencepiece", "sacremoses"]
......
...@@ -34,6 +34,7 @@ To create the package for pypi. ...@@ -34,6 +34,7 @@ To create the package for pypi.
""" """
from io import open from io import open
from setuptools import find_packages, setup from setuptools import find_packages, setup
......
...@@ -17,54 +17,55 @@ ...@@ -17,54 +17,55 @@
from __future__ import absolute_import, division, print_function from __future__ import absolute_import, division, print_function
import argparse import argparse
import glob
import logging import logging
import os import os
import random import random
import glob
import numpy as np import numpy as np
import torch import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange from tqdm import tqdm, trange
from transformers import ( from transformers import (
WEIGHTS_NAME, WEIGHTS_NAME,
AdamW,
BertConfig, BertConfig,
BertForQuestionAnswering, BertForQuestionAnswering,
BertTokenizer, BertTokenizer,
DistilBertConfig,
DistilBertForQuestionAnswering,
DistilBertTokenizer,
XLMConfig, XLMConfig,
XLMForQuestionAnswering, XLMForQuestionAnswering,
XLMTokenizer, XLMTokenizer,
XLNetConfig, XLNetConfig,
XLNetForQuestionAnswering, XLNetForQuestionAnswering,
XLNetTokenizer, XLNetTokenizer,
DistilBertConfig, get_linear_schedule_with_warmup,
DistilBertForQuestionAnswering,
DistilBertTokenizer,
) )
from transformers import AdamW, get_linear_schedule_with_warmup
from utils_squad import ( from utils_squad import (
read_squad_examples,
convert_examples_to_features,
RawResult, RawResult,
write_predictions,
RawResultExtended, RawResultExtended,
convert_examples_to_features,
read_squad_examples,
write_predictions,
write_predictions_extended, write_predictions_extended,
) )
# The follwing import is the official SQuAD evaluation script (2.0). # The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library # You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file) # We've added it here for automated tests (see examples/test_examples.py file)
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad from utils_squad_evaluate import EVAL_OPTS
from utils_squad_evaluate import main as evaluate_on_squad
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment