Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
1486d2ae
Unverified
Commit
1486d2ae
authored
Jul 26, 2023
by
amyeroberts
Committed by
GitHub
Jul 26, 2023
Browse files
Move common image processing methods to BaseImageProcessor (#25089)
Move out common methods
parent
d30cf3d0
Changes
41
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
62 additions
and
690 deletions
+62
-690
src/transformers/image_processing_utils.py
src/transformers/image_processing_utils.py
+53
-0
src/transformers/models/beit/image_processing_beit.py
src/transformers/models/beit/image_processing_beit.py
+1
-44
src/transformers/models/bit/image_processing_bit.py
src/transformers/models/bit/image_processing_bit.py
+0
-45
src/transformers/models/blip/image_processing_blip.py
src/transformers/models/blip/image_processing_blip.py
+1
-44
src/transformers/models/bridgetower/image_processing_bridgetower.py
...ormers/models/bridgetower/image_processing_bridgetower.py
+1
-46
src/transformers/models/chinese_clip/image_processing_chinese_clip.py
...mers/models/chinese_clip/image_processing_chinese_clip.py
+0
-45
src/transformers/models/clip/image_processing_clip.py
src/transformers/models/clip/image_processing_clip.py
+0
-45
src/transformers/models/conditional_detr/image_processing_conditional_detr.py
...els/conditional_detr/image_processing_conditional_detr.py
+0
-14
src/transformers/models/convnext/image_processing_convnext.py
...transformers/models/convnext/image_processing_convnext.py
+0
-45
src/transformers/models/deformable_detr/image_processing_deformable_detr.py
...odels/deformable_detr/image_processing_deformable_detr.py
+0
-14
src/transformers/models/deit/image_processing_deit.py
src/transformers/models/deit/image_processing_deit.py
+1
-44
src/transformers/models/deta/image_processing_deta.py
src/transformers/models/deta/image_processing_deta.py
+0
-14
src/transformers/models/detr/image_processing_detr.py
src/transformers/models/detr/image_processing_detr.py
+0
-13
src/transformers/models/donut/image_processing_donut.py
src/transformers/models/donut/image_processing_donut.py
+0
-45
src/transformers/models/dpt/image_processing_dpt.py
src/transformers/models/dpt/image_processing_dpt.py
+1
-44
src/transformers/models/efficientformer/image_processing_efficientformer.py
...odels/efficientformer/image_processing_efficientformer.py
+0
-53
src/transformers/models/efficientnet/image_processing_efficientnet.py
...mers/models/efficientnet/image_processing_efficientnet.py
+1
-24
src/transformers/models/flava/image_processing_flava.py
src/transformers/models/flava/image_processing_flava.py
+1
-44
src/transformers/models/glpn/image_processing_glpn.py
src/transformers/models/glpn/image_processing_glpn.py
+1
-23
src/transformers/models/layoutlmv3/image_processing_layoutlmv3.py
...sformers/models/layoutlmv3/image_processing_layoutlmv3.py
+1
-44
No files found.
src/transformers/image_processing_utils.py
View file @
1486d2ae
...
@@ -23,6 +23,8 @@ import numpy as np
...
@@ -23,6 +23,8 @@ import numpy as np
from
.dynamic_module_utils
import
custom_object_save
from
.dynamic_module_utils
import
custom_object_save
from
.feature_extraction_utils
import
BatchFeature
as
BaseBatchFeature
from
.feature_extraction_utils
import
BatchFeature
as
BaseBatchFeature
from
.image_transforms
import
normalize
,
rescale
from
.image_utils
import
ChannelDimension
from
.utils
import
(
from
.utils
import
(
IMAGE_PROCESSOR_NAME
,
IMAGE_PROCESSOR_NAME
,
PushToHubMixin
,
PushToHubMixin
,
...
@@ -518,6 +520,57 @@ class BaseImageProcessor(ImageProcessingMixin):
...
@@ -518,6 +520,57 @@ class BaseImageProcessor(ImageProcessingMixin):
def
preprocess
(
self
,
images
,
**
kwargs
)
->
BatchFeature
:
def
preprocess
(
self
,
images
,
**
kwargs
)
->
BatchFeature
:
raise
NotImplementedError
(
"Each image processor must implement its own preprocess method"
)
raise
NotImplementedError
(
"Each image processor must implement its own preprocess method"
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
float
,
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
)
->
np
.
ndarray
:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `Iterable[float]`):
Image mean to use for normalization.
std (`float` or `Iterable[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
VALID_SIZE_DICT_KEYS
=
({
"height"
,
"width"
},
{
"shortest_edge"
},
{
"shortest_edge"
,
"longest_edge"
},
{
"longest_edge"
})
VALID_SIZE_DICT_KEYS
=
({
"height"
,
"width"
},
{
"shortest_edge"
},
{
"shortest_edge"
,
"longest_edge"
},
{
"longest_edge"
})
...
...
src/transformers/models/beit/image_processing_beit.py
View file @
1486d2ae
...
@@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
...
@@ -20,7 +20,7 @@ from typing import Any, Dict, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -189,49 +189,6 @@ class BeitImageProcessor(BaseImageProcessor):
...
@@ -189,49 +189,6 @@ class BeitImageProcessor(BaseImageProcessor):
size
=
get_size_dict
(
size
,
default_to_square
=
True
,
param_name
=
"size"
)
size
=
get_size_dict
(
size
,
default_to_square
=
True
,
param_name
=
"size"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
reduce_label
(
self
,
label
:
ImageInput
)
->
np
.
ndarray
:
def
reduce_label
(
self
,
label
:
ImageInput
)
->
np
.
ndarray
:
label
=
to_numpy_array
(
label
)
label
=
to_numpy_array
(
label
)
# Avoid using underflow conversion
# Avoid using underflow conversion
...
...
src/transformers/models/bit/image_processing_bit.py
View file @
1486d2ae
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
center_crop
,
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -173,49 +171,6 @@ class BitImageProcessor(BaseImageProcessor):
...
@@ -173,49 +171,6 @@ class BitImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/blip/image_processing_blip.py
View file @
1486d2ae
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
convert_to_rgb
,
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
convert_to_rgb
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_STD
,
OPENAI_CLIP_STD
,
...
@@ -137,49 +137,6 @@ class BlipImageProcessor(BaseImageProcessor):
...
@@ -137,49 +137,6 @@ class BlipImageProcessor(BaseImageProcessor):
output_size
=
(
size
[
"height"
],
size
[
"width"
])
output_size
=
(
size
[
"height"
],
size
[
"width"
])
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/bridgetower/image_processing_bridgetower.py
View file @
1486d2ae
...
@@ -19,7 +19,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
...
@@ -19,7 +19,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
PaddingMode
,
center_crop
,
normalize
,
pad
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
PaddingMode
,
center_crop
,
pad
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_STD
,
OPENAI_CLIP_STD
,
...
@@ -226,27 +226,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
...
@@ -226,27 +226,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
output_size
=
get_resize_output_image_size
(
image
,
shorter
=
shorter
,
longer
=
longer
,
size_divisor
=
size_divisor
)
output_size
=
get_resize_output_image_size
(
image
,
shorter
=
shorter
,
longer
=
longer
,
size_divisor
=
size_divisor
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.rescale
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
center_crop
(
def
center_crop
(
self
,
self
,
image
:
np
.
ndarray
,
image
:
np
.
ndarray
,
...
@@ -269,30 +248,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
...
@@ -269,30 +248,6 @@ class BridgeTowerImageProcessor(BaseImageProcessor):
output_size
=
size
[
"shortest_edge"
]
output_size
=
size
[
"shortest_edge"
]
return
center_crop
(
image
,
size
=
(
output_size
,
output_size
),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
output_size
,
output_size
),
data_format
=
data_format
,
**
kwargs
)
# Copied from transformers.models.vilt.image_processing_vilt.ViltImageProcessor.normalize
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean.
std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
_pad_image
(
def
_pad_image
(
self
,
self
,
image
:
np
.
ndarray
,
image
:
np
.
ndarray
,
...
...
src/transformers/models/chinese_clip/image_processing_chinese_clip.py
View file @
1486d2ae
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
center_crop
,
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -171,49 +169,6 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
...
@@ -171,49 +169,6 @@ class ChineseCLIPImageProcessor(BaseImageProcessor):
size
=
get_size_dict
(
size
)
size
=
get_size_dict
(
size
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/clip/image_processing_clip.py
View file @
1486d2ae
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
...
@@ -23,8 +23,6 @@ from ...image_transforms import (
center_crop
,
center_crop
,
convert_to_rgb
,
convert_to_rgb
,
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -173,49 +171,6 @@ class CLIPImageProcessor(BaseImageProcessor):
...
@@ -173,49 +171,6 @@ class CLIPImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/conditional_detr/image_processing_conditional_detr.py
View file @
1486d2ae
...
@@ -28,7 +28,6 @@ from ...image_transforms import (
...
@@ -28,7 +28,6 @@ from ...image_transforms import (
center_to_corners_format
,
center_to_corners_format
,
corners_to_center_format
,
corners_to_center_format
,
id_to_rgb
,
id_to_rgb
,
normalize
,
pad
,
pad
,
rescale
,
rescale
,
resize
,
resize
,
...
@@ -943,19 +942,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
...
@@ -943,19 +942,6 @@ class ConditionalDetrImageProcessor(BaseImageProcessor):
"""
"""
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
ChannelDimension
]
=
None
,
)
->
np
.
ndarray
:
"""
Normalize the image with the given mean and standard deviation.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
"""
"""
...
...
src/transformers/models/convnext/image_processing_convnext.py
View file @
1486d2ae
...
@@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
...
@@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -158,49 +156,6 @@ class ConvNextImageProcessor(BaseImageProcessor):
...
@@ -158,49 +156,6 @@ class ConvNextImageProcessor(BaseImageProcessor):
image
,
size
=
(
shortest_edge
,
shortest_edge
),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
image
,
size
=
(
shortest_edge
,
shortest_edge
),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/deformable_detr/image_processing_deformable_detr.py
View file @
1486d2ae
...
@@ -28,7 +28,6 @@ from ...image_transforms import (
...
@@ -28,7 +28,6 @@ from ...image_transforms import (
center_to_corners_format
,
center_to_corners_format
,
corners_to_center_format
,
corners_to_center_format
,
id_to_rgb
,
id_to_rgb
,
normalize
,
pad
,
pad
,
rescale
,
rescale
,
resize
,
resize
,
...
@@ -941,19 +940,6 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
...
@@ -941,19 +940,6 @@ class DeformableDetrImageProcessor(BaseImageProcessor):
"""
"""
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
ChannelDimension
]
=
None
,
)
->
np
.
ndarray
:
"""
Normalize the image with the given mean and standard deviation.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
"""
"""
...
...
src/transformers/models/deit/image_processing_deit.py
View file @
1486d2ae
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -159,49 +159,6 @@ class DeiTImageProcessor(BaseImageProcessor):
...
@@ -159,49 +159,6 @@ class DeiTImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"The size dictionary must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"The size dictionary must have keys 'height' and 'width'. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/deta/image_processing_deta.py
View file @
1486d2ae
...
@@ -25,7 +25,6 @@ from ...image_transforms import (
...
@@ -25,7 +25,6 @@ from ...image_transforms import (
PaddingMode
,
PaddingMode
,
center_to_corners_format
,
center_to_corners_format
,
corners_to_center_format
,
corners_to_center_format
,
normalize
,
pad
,
pad
,
rescale
,
rescale
,
resize
,
resize
,
...
@@ -614,19 +613,6 @@ class DetaImageProcessor(BaseImageProcessor):
...
@@ -614,19 +613,6 @@ class DetaImageProcessor(BaseImageProcessor):
"""
"""
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
ChannelDimension
]
=
None
,
)
->
np
.
ndarray
:
"""
Normalize the image with the given mean and standard deviation.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
"""
"""
...
...
src/transformers/models/detr/image_processing_detr.py
View file @
1486d2ae
...
@@ -27,7 +27,6 @@ from ...image_transforms import (
...
@@ -27,7 +27,6 @@ from ...image_transforms import (
center_to_corners_format
,
center_to_corners_format
,
corners_to_center_format
,
corners_to_center_format
,
id_to_rgb
,
id_to_rgb
,
normalize
,
pad
,
pad
,
rescale
,
rescale
,
resize
,
resize
,
...
@@ -916,18 +915,6 @@ class DetrImageProcessor(BaseImageProcessor):
...
@@ -916,18 +915,6 @@ class DetrImageProcessor(BaseImageProcessor):
"""
"""
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
return
rescale
(
image
,
rescale_factor
,
data_format
=
data_format
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
ChannelDimension
]
=
None
,
)
->
np
.
ndarray
:
"""
Normalize the image with the given mean and standard deviation.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
)
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
def
normalize_annotation
(
self
,
annotation
:
Dict
,
image_size
:
Tuple
[
int
,
int
])
->
Dict
:
"""
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
...
...
src/transformers/models/donut/image_processing_donut.py
View file @
1486d2ae
...
@@ -21,9 +21,7 @@ import numpy as np
...
@@ -21,9 +21,7 @@ import numpy as np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
(
from
...image_transforms
import
(
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
pad
,
pad
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -263,49 +261,6 @@ class DonutImageProcessor(BaseImageProcessor):
...
@@ -263,49 +261,6 @@ class DonutImageProcessor(BaseImageProcessor):
resized_image
=
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
resized_image
=
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resized_image
return
resized_image
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/dpt/image_processing_dpt.py
View file @
1486d2ae
...
@@ -20,7 +20,7 @@ from typing import Dict, Iterable, List, Optional, Tuple, Union
...
@@ -20,7 +20,7 @@ from typing import Dict, Iterable, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -191,49 +191,6 @@ class DPTImageProcessor(BaseImageProcessor):
...
@@ -191,49 +191,6 @@ class DPTImageProcessor(BaseImageProcessor):
)
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/efficientformer/image_processing_efficientformer.py
View file @
1486d2ae
...
@@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
...
@@ -22,8 +22,6 @@ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size
from
...image_transforms
import
(
from
...image_transforms
import
(
center_crop
,
center_crop
,
get_resize_output_image_size
,
get_resize_output_image_size
,
normalize
,
rescale
,
resize
,
resize
,
to_channel_dimension_format
,
to_channel_dimension_format
,
)
)
...
@@ -175,57 +173,6 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
...
@@ -175,57 +173,6 @@ class EfficientFormerImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"The `size` parameter must contain the keys (height, width). Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
float
,
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
)
->
np
.
ndarray
:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `List[float]`):
Image mean to use for normalization.
std (`float` or `List[float]`):
Image standard deviation to use for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The normalized image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/efficientnet/image_processing_efficientnet.py
View file @
1486d2ae
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, List, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
center_crop
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -198,29 +198,6 @@ class EfficientNetImageProcessor(BaseImageProcessor):
...
@@ -198,29 +198,6 @@ class EfficientNetImageProcessor(BaseImageProcessor):
rescaled_image
=
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
rescaled_image
=
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
return
rescaled_image
return
rescaled_image
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
src/transformers/models/flava/image_processing_flava.py
View file @
1486d2ae
...
@@ -22,7 +22,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
...
@@ -22,7 +22,7 @@ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
center_crop
,
normalize
,
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
center_crop
,
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_MEAN
,
OPENAI_CLIP_STD
,
OPENAI_CLIP_STD
,
...
@@ -383,49 +383,6 @@ class FlavaImageProcessor(BaseImageProcessor):
...
@@ -383,49 +383,6 @@ class FlavaImageProcessor(BaseImageProcessor):
raise
ValueError
(
f
"The size dictionary must contain 'height' and 'width' keys. Got
{
size
.
keys
()
}
"
)
raise
ValueError
(
f
"The size dictionary must contain 'height' and 'width' keys. Got
{
size
.
keys
()
}
"
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
return
center_crop
(
image
,
size
=
(
size
[
"height"
],
size
[
"width"
]),
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
):
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
List
[
float
]],
std
:
Union
[
float
,
List
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image. image = (image - image_mean) / image_std.
Args:
image (`np.ndarray`):
Image to normalize.
image_mean (`float` or `List[float]`):
Image mean.
image_std (`float` or `List[float]`):
Image standard deviation.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
map_pixels
(
self
,
image
:
np
.
ndarray
)
->
np
.
ndarray
:
def
map_pixels
(
self
,
image
:
np
.
ndarray
)
->
np
.
ndarray
:
return
(
1
-
2
*
LOGIT_LAPLACE_EPS
)
*
image
+
LOGIT_LAPLACE_EPS
return
(
1
-
2
*
LOGIT_LAPLACE_EPS
)
*
image
+
LOGIT_LAPLACE_EPS
...
...
src/transformers/models/glpn/image_processing_glpn.py
View file @
1486d2ae
...
@@ -20,7 +20,7 @@ import numpy as np
...
@@ -20,7 +20,7 @@ import numpy as np
import
PIL.Image
import
PIL.Image
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
from
...image_transforms
import
rescale
,
resize
,
to_channel_dimension_format
from
...image_transforms
import
resize
,
to_channel_dimension_format
from
...image_utils
import
(
from
...image_utils
import
(
ChannelDimension
,
ChannelDimension
,
PILImageResampling
,
PILImageResampling
,
...
@@ -101,28 +101,6 @@ class GLPNImageProcessor(BaseImageProcessor):
...
@@ -101,28 +101,6 @@ class GLPNImageProcessor(BaseImageProcessor):
image
=
resize
(
image
,
(
new_h
,
new_w
),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
image
=
resize
(
image
,
(
new_h
,
new_w
),
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
image
return
image
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
float
,
data_format
:
Optional
[
ChannelDimension
]
=
None
,
**
kwargs
)
->
np
.
ndarray
:
"""
Rescale the image by the given scaling factor `scale`.
Args:
image (`np.ndarray`):
The image to rescale.
scale (`float`):
The scaling factor to rescale pixel values by.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If `None`, the channel dimension format of the input
image is used. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The rescaled image.
"""
return
rescale
(
image
=
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
Union
[
"PIL.Image.Image"
,
TensorType
,
List
[
"PIL.Image.Image"
],
List
[
TensorType
]],
images
:
Union
[
"PIL.Image.Image"
,
TensorType
,
List
[
"PIL.Image.Image"
],
List
[
TensorType
]],
...
...
src/transformers/models/layoutlmv3/image_processing_layoutlmv3.py
View file @
1486d2ae
...
@@ -19,7 +19,7 @@ from typing import Dict, Iterable, Optional, Union
...
@@ -19,7 +19,7 @@ from typing import Dict, Iterable, Optional, Union
import
numpy
as
np
import
numpy
as
np
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_processing_utils
import
BaseImageProcessor
,
BatchFeature
,
get_size_dict
from
...image_transforms
import
normalize
,
rescale
,
resize
,
to_channel_dimension_format
,
to_pil_image
from
...image_transforms
import
resize
,
to_channel_dimension_format
,
to_pil_image
from
...image_utils
import
(
from
...image_utils
import
(
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_MEAN
,
IMAGENET_STANDARD_STD
,
IMAGENET_STANDARD_STD
,
...
@@ -184,49 +184,6 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
...
@@ -184,49 +184,6 @@ class LayoutLMv3ImageProcessor(BaseImageProcessor):
output_size
=
(
size
[
"height"
],
size
[
"width"
])
output_size
=
(
size
[
"height"
],
size
[
"width"
])
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
return
resize
(
image
,
size
=
output_size
,
resample
=
resample
,
data_format
=
data_format
,
**
kwargs
)
def
rescale
(
self
,
image
:
np
.
ndarray
,
scale
:
Union
[
int
,
float
],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Rescale an image by a scale factor. image = image * scale.
Args:
image (`np.ndarray`):
Image to rescale.
scale (`int` or `float`):
Scale to apply to the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
rescale
(
image
,
scale
=
scale
,
data_format
=
data_format
,
**
kwargs
)
def
normalize
(
self
,
image
:
np
.
ndarray
,
mean
:
Union
[
float
,
Iterable
[
float
]],
std
:
Union
[
float
,
Iterable
[
float
]],
data_format
:
Optional
[
Union
[
str
,
ChannelDimension
]]
=
None
,
**
kwargs
,
)
->
np
.
ndarray
:
"""
Normalize an image.
Args:
image (`np.ndarray`):
Image to normalize.
mean (`float` or `Iterable[float]`):
Mean values to be used for normalization.
std (`float` or `Iterable[float]`):
Standard deviation values to be used for normalization.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
"""
return
normalize
(
image
,
mean
=
mean
,
std
=
std
,
data_format
=
data_format
,
**
kwargs
)
def
preprocess
(
def
preprocess
(
self
,
self
,
images
:
ImageInput
,
images
:
ImageInput
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment