Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
12e013db
Commit
12e013db
authored
Oct 30, 2018
by
thomwolf
Browse files
added wordpiece - updated readme
parent
ccce66be
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
794 additions
and
68 deletions
+794
-68
README.md
README.md
+22
-1
bert_model.py
bert_model.py
+5
-12
data_processor.py
data_processor.py
+767
-37
example.py
example.py
+0
-18
No files found.
README.md
View file @
12e013db
# pytorch-pretrained-BERT
# pytorch-pretrained-BERT
A PyTorch version of Google's pretrained BERT model
A PyTorch version of Google's pretrained BERT model as described in
No bells and whitles, just:
-
[
one class
](
bert_model.py
)
with a clean commented version of Google's BERT model that can load the weights pre-trained by Google's authors,
-
[
another class
](
data_processor.py
)
with all you need to pre- and post-process text data for the model (tokenize and encode),
-
and
[
a script
](
download_weigths.sh
)
to download Google's pre-trained weights.
Here is how to use these:
```
python
from
.bert_model
import
BERT
from
.data_processor
import
DataProcessor
bert_model
=
BERT
(
bert_model_path
=
'.'
)
data_processor
=
DataProcessor
(
bert_vocab_path
=
'.'
)
input_sentence
=
"We are playing with the BERT model."
tensor_input
=
data_processor
.
encode
(
input_sentence
)
tensor_output
=
bert_model
(
prepared_input
)
output_sentence
=
data_processor
.
decode
(
tensor_output
)
```
bert_model.py
View file @
12e013db
...
@@ -13,7 +13,6 @@ from typing import NamedTuple, List
...
@@ -13,7 +13,6 @@ from typing import NamedTuple, List
import
copy
import
copy
import
io
import
io
import
json
import
json
import
logging
import
math
import
math
import
pathlib
import
pathlib
import
re
import
re
...
@@ -273,10 +272,7 @@ class BERT(torch.nn.Module):
...
@@ -273,10 +272,7 @@ class BERT(torch.nn.Module):
config
=
BERTConfig
(
config
=
BERTConfig
(
embedding_dim
,
embedding_dim
,
num_heads
,
num_heads
,
embedding_dropout_probability
,
dropout_probability
,
attention_dropout_probability
,
residual_dropout_probability
,
activation_function
,
)
)
# the embedding size is vocab_size + n_special embeddings + n_ctx
# the embedding size is vocab_size + n_special embeddings + n_ctx
...
@@ -288,7 +284,7 @@ class BERT(torch.nn.Module):
...
@@ -288,7 +284,7 @@ class BERT(torch.nn.Module):
self
.
num_output_layers
=
1
+
num_layers
self
.
num_output_layers
=
1
+
num_layers
self
.
embed
=
torch
.
nn
.
Embedding
(
embedding_size
,
embedding_dim
)
self
.
embed
=
torch
.
nn
.
Embedding
(
embedding_size
,
embedding_dim
)
self
.
drop
=
torch
.
nn
.
Dropout
(
embedding_
dropout_probability
)
self
.
drop
=
torch
.
nn
.
Dropout
(
dropout_probability
)
block
=
Block
(
n_ctx
,
config
,
scale
=
True
)
block
=
Block
(
n_ctx
,
config
,
scale
=
True
)
self
.
h
=
torch
.
nn
.
ModuleList
([
copy
.
deepcopy
(
block
)
for
_
in
range
(
num_layers
)])
self
.
h
=
torch
.
nn
.
ModuleList
([
copy
.
deepcopy
(
block
)
for
_
in
range
(
num_layers
)])
...
@@ -332,16 +328,13 @@ class BERT(torch.nn.Module):
...
@@ -332,16 +328,13 @@ class BERT(torch.nn.Module):
names
:
List
[
str
]
=
_PARAMETER_NAMES
)
->
None
:
names
:
List
[
str
]
=
_PARAMETER_NAMES
)
->
None
:
# pylint: disable=dangerous-default-value
# pylint: disable=dangerous-default-value
logger
.
info
(
f
"loading weights from
{
bert_model_path
}
"
)
# if `file_path` is a URL, redirect to the cache
with
tarfile
.
open
(
bert_model_path
)
as
tmp
:
with
tarfile
.
open
(
bert_model_path
)
as
tmp
:
num_params_files
=
len
([
member
for
member
in
tmp
.
getmembers
()
if
member
.
name
.
endswith
(
'.npy'
)])
num_params_files
=
len
([
member
for
member
in
tmp
.
getmembers
()
if
member
.
name
.
endswith
(
'.npy'
)])
shapesfile
=
tmp
.
extractfile
(
'model/params_shapes.json'
)
shapesfile
=
tmp
.
extractfile
(
'model/params_shapes.json'
)
if
shapesfile
:
if
shapesfile
:
shapes
=
json
.
loads
(
shapesfile
.
read
())
shapes
=
json
.
loads
(
shapesfile
.
read
())
else
:
else
:
raise
ConfigurationError
(
"unable to find model/params_shapes.json in the archive"
)
raise
Exception
(
"unable to find model/params_shapes.json in the archive"
)
# numpy can't read from a tarfile directly, so we need a workaround
# numpy can't read from a tarfile directly, so we need a workaround
# https://github.com/numpy/numpy/issues/7989#issuecomment-341656702
# https://github.com/numpy/numpy/issues/7989#issuecomment-341656702
...
...
data_processor.py
View file @
12e013db
# coding=utf-8
# Copyright 2018 The Tensor2Tensor Authors and Thomas Wolf
"""
"""
Prepare input data for Google's BERT Model.
Prepare input data for Google's BERT Model using WordPiece tokenization
and build arrays of word, position and sentence embeddings.
Contains some functions from tensor2tensor library: https://github.com/tensorflow/tensor2tensor
The WordPiece tokenization classes and functions are taken from the tensor2tensor library:
https://github.com/tensorflow/tensor2tensor
"""
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
typing
import
NamedTuple
,
List
,
Union
,
Tuple
from
typing
import
NamedTuple
,
List
,
Union
,
Tuple
import
re
import
os
import
six
import
sys
import
time
import
glob
import
logging
import
collections
import
unicodedata
from
itertools
import
chain
from
six.moves
import
range
# pylint: disable=redefined-builtin
import
numpy
as
np
TokenizedSentence
=
List
[
str
]
logger
=
logging
.
getLogger
(
__name__
)
# pylint: disable=invalid-name
TokenizedInput
=
Union
[
Tuple
[
TokenizedSentence
,
TokenizedSentence
],
TokenizedSentence
]
# Reserved tokens for things like padding and EOS symbols.
PAD
=
"<pad>"
EOS
=
"<EOS>"
RESERVED_TOKENS
=
[
PAD
,
EOS
]
NUM_RESERVED_TOKENS
=
len
(
RESERVED_TOKENS
)
PAD_ID
=
RESERVED_TOKENS
.
index
(
PAD
)
# Normally 0
EOS_ID
=
RESERVED_TOKENS
.
index
(
EOS
)
# Normally 1
# Regular expression for unescaping token strings.
# '\u' is converted to '_'
# '\\' is converted to '\'
# '\213;' is converted to unichr(213)
_UNESCAPE_REGEX
=
re
.
compile
(
r
"\\u|\\\\|\\([0-9]+);"
)
_ESCAPE_CHARS
=
set
(
u
"
\\
_u;0123456789"
)
# This set contains all letter and number characters.
_ALPHANUMERIC_CHAR_SET
=
set
(
six
.
unichr
(
i
)
for
i
in
range
(
sys
.
maxunicode
)
if
(
unicodedata
.
category
(
six
.
unichr
(
i
)).
startswith
(
"L"
)
or
unicodedata
.
category
(
six
.
unichr
(
i
)).
startswith
(
"N"
)))
# Unicode utility functions that work with Python 2 and 3
def
native_to_unicode
(
s
):
if
is_unicode
(
s
):
return
s
try
:
return
to_unicode
(
s
)
except
UnicodeDecodeError
:
res
=
to_unicode
(
s
,
ignore_errors
=
True
)
logger
.
info
(
"Ignoring Unicode error, outputting: {}"
.
format
(
res
))
return
res
def
unicode_to_native
(
s
):
if
six
.
PY2
:
return
s
.
encode
(
"utf-8"
)
if
is_unicode
(
s
)
else
s
else
:
return
s
def
is_unicode
(
s
):
if
six
.
PY2
:
if
isinstance
(
s
,
unicode
):
return
True
else
:
if
isinstance
(
s
,
str
):
return
True
return
False
class
DataProcessor
():
def
__init__
(
self
,
vocab_path
):
self
.
encoder_file_path
=
encoder_file_path
self
.
token_indexer
=
json
.
load
(
open
(
vocab_path
))
def
to_unicode
(
s
,
ignore_errors
=
False
):
if
is_unicode
(
s
):
return
s
error_mode
=
"ignore"
if
ignore_errors
else
"strict"
return
s
.
decode
(
"utf-8"
,
errors
=
error_mode
)
def
tokenize
(
text
):
"""Encode a unicode string as a list of tokens.
def
to_unicode_ignore_errors
(
s
):
return
to_unicode
(
s
,
ignore_errors
=
True
)
def
strip_ids
(
ids
,
ids_to_strip
):
"""Strip ids_to_strip from the end ids."""
ids
=
list
(
ids
)
while
ids
and
ids
[
-
1
]
in
ids_to_strip
:
ids
.
pop
()
return
ids
def
tokenizer_encode
(
text
):
"""A simple invertible tokenizer (in words).
Converts from a unicode string to a list of tokens
(represented as Unicode strings).
This tokenizer has the following desirable properties:
- It is invertible.
- Alphanumeric characters are broken away from non-alphanumeric characters.
- A single space between words does not produce an extra token.
- The full Unicode punctuation and separator set is recognized.
The tokenization algorithm is as follows:
1. Split the text into a list of tokens, splitting at every boundary of an
alphanumeric character and a non-alphanumeric character. This produces
a list which alternates between "alphanumeric tokens"
(strings of alphanumeric characters) and "non-alphanumeric tokens"
(strings of non-alphanumeric characters).
2. Remove every token consisting of a single space, unless it is
the very first or very last token in the list. These tokens are now
implied by the fact that there are two adjacent alphanumeric tokens.
e.g. u"Dude - that's so cool."
-> [u"Dude", u" - ", u"that", u"'", u"s", u"so", u"cool", u"."]
Args:
Args:
text: a unicode string
text: a unicode string
...
@@ -40,7 +147,7 @@ class DataProcessor():
...
@@ -40,7 +147,7 @@ class DataProcessor():
return
ret
return
ret
def
de
tokenize
(
tokens
):
def
tokenize
r_decode
(
tokens
):
"""Decode a list of tokens to a unicode string.
"""Decode a list of tokens to a unicode string.
Args:
Args:
...
@@ -56,34 +163,657 @@ class DataProcessor():
...
@@ -56,34 +163,657 @@ class DataProcessor():
ret
.
append
(
token
)
ret
.
append
(
token
)
return
""
.
join
(
ret
)
return
""
.
join
(
ret
)
def
encode
(
input_sentences
:
List
[
TokenizedInput
])
->
np
.
array
:
class
TextEncoder
(
object
):
"""Base class for converting from ints to/from human readable strings."""
def
__init__
(
self
,
num_reserved_ids
=
NUM_RESERVED_TOKENS
):
self
.
_num_reserved_ids
=
num_reserved_ids
@
property
def
num_reserved_ids
(
self
):
return
self
.
_num_reserved_ids
def
encode
(
self
,
s
):
"""Transform a human-readable string into a sequence of int ids.
The ids should be in the range [num_reserved_ids, vocab_size). Ids [0,
num_reserved_ids) are reserved.
EOS is not appended.
Args:
s: human-readable string to be converted.
Returns:
ids: list of integers
"""
return
[
int
(
w
)
+
self
.
_num_reserved_ids
for
w
in
s
.
split
()]
def
decode
(
self
,
ids
,
strip_extraneous
=
False
):
"""Transform a sequence of int ids into a human-readable string.
EOS is not expected in ids.
Args:
ids: list of integers to be converted.
strip_extraneous: bool, whether to strip off extraneous tokens
(EOS and PAD).
Returns:
s: human-readable string.
"""
if
strip_extraneous
:
ids
=
strip_ids
(
ids
,
list
(
range
(
self
.
_num_reserved_ids
or
0
)))
return
" "
.
join
(
self
.
decode_list
(
ids
))
def
decode_list
(
self
,
ids
):
"""Transform a sequence of int ids into a their string versions.
This method supports transforming individual input/output ids to their
string versions so that sequence to/from text conversions can be visualized
in a human readable format.
Args:
ids: list of integers to be converted.
Returns:
strs: list of human-readable string.
"""
decoded_ids
=
[]
for
id_
in
ids
:
if
0
<=
id_
<
self
.
_num_reserved_ids
:
decoded_ids
.
append
(
RESERVED_TOKENS
[
int
(
id_
)])
else
:
decoded_ids
.
append
(
id_
-
self
.
_num_reserved_ids
)
return
[
str
(
d
)
for
d
in
decoded_ids
]
@
property
def
vocab_size
(
self
):
raise
NotImplementedError
()
def
_escape_token
(
token
,
alphabet
):
"""Escape away underscores and OOV characters and append '_'.
This allows the token to be expressed as the concatenation of a list
of subtokens from the vocabulary. The underscore acts as a sentinel
which allows us to invertibly concatenate multiple such lists.
Args:
token: A unicode string to be escaped.
alphabet: A set of all characters in the vocabulary's alphabet.
Returns:
escaped_token: An escaped unicode string.
Raises:
ValueError: If the provided token is not unicode.
"""
if
not
isinstance
(
token
,
six
.
text_type
):
raise
ValueError
(
"Expected string type for token, got %s"
%
type
(
token
))
token
=
token
.
replace
(
u
"
\\
"
,
u
"
\\\\
"
).
replace
(
u
"_"
,
u
"
\\
u"
)
ret
=
[
c
if
c
in
alphabet
and
c
!=
u
"
\n
"
else
r
"\%d;"
%
ord
(
c
)
for
c
in
token
]
return
u
""
.
join
(
ret
)
+
"_"
def
_unescape_token
(
escaped_token
):
"""Inverse of _escape_token().
Args:
escaped_token: a unicode string
Returns:
token: a unicode string
"""
def
match
(
m
):
if
m
.
group
(
1
)
is
None
:
return
u
"_"
if
m
.
group
(
0
)
==
u
"
\\
u"
else
u
"
\\
"
try
:
return
six
.
unichr
(
int
(
m
.
group
(
1
)))
except
(
ValueError
,
OverflowError
)
as
_
:
return
u
"
\u3013
"
# Unicode for undefined character.
trimmed
=
escaped_token
[:
-
1
]
if
escaped_token
.
endswith
(
"_"
)
else
escaped_token
return
_UNESCAPE_REGEX
.
sub
(
match
,
trimmed
)
class
SubwordTextEncoder
(
TextEncoder
):
"""Class for invertibly encoding text using a limited vocabulary.
Invertibly encodes a native string as a sequence of subtokens from a limited
vocabulary.
A SubwordTextEncoder is built from a corpus (so it is tailored to the text in
the corpus), and stored to a file. See text_encoder_build_subword.py.
It can then be loaded and used to encode/decode any text.
Encoding has four phases:
1. Tokenize into a list of tokens. Each token is a unicode string of either
all alphanumeric characters or all non-alphanumeric characters. We drop
tokens consisting of a single space that are between two alphanumeric
tokens.
2. Escape each token. This escapes away special and out-of-vocabulary
characters, and makes sure that each token ends with an underscore, and
has no other underscores.
3. Represent each escaped token as a the concatenation of a list of subtokens
from the limited vocabulary. Subtoken selection is done greedily from
beginning to end. That is, we construct the list in order, always picking
the longest subtoken in our vocabulary that matches a prefix of the
remaining portion of the encoded token.
4. Concatenate these lists. This concatenation is invertible due to the
fact that the trailing underscores indicate when one list is finished.
"""
def
__init__
(
self
,
filename
=
None
):
"""Initialize and read from a file, if provided.
Args:
filename: filename from which to read vocab. If None, do not load a
vocab
"""
self
.
_alphabet
=
set
()
self
.
filename
=
filename
if
filename
is
not
None
:
self
.
_load_from_file
(
filename
)
super
(
SubwordTextEncoder
,
self
).
__init__
()
def
encode
(
self
,
s
):
"""Converts a native string to a list of subtoken ids.
Args:
s: a native string.
Returns:
a list of integers in the range [0, vocab_size)
"""
return
self
.
_tokens_to_subtoken_ids
(
tokenizer_encode
(
native_to_unicode
(
s
)))
def
encode_without_tokenizing
(
self
,
token_text
):
"""Converts string to list of subtoken ids without calling tokenizer.
This treats `token_text` as a single token and directly converts it
to subtoken ids. This may be useful when the default tokenizer doesn't
do what we want (e.g., when encoding text with tokens composed of lots of
nonalphanumeric characters). It is then up to the caller to make sure that
raw text is consistently converted into tokens. Only use this if you are
sure that `encode` doesn't suit your needs.
Args:
token_text: A native string representation of a single token.
Returns:
A list of subword token ids; i.e., integers in the range [0, vocab_size).
"""
return
self
.
_tokens_to_subtoken_ids
([
native_to_unicode
(
token_text
)])
def
decode
(
self
,
ids
,
strip_extraneous
=
False
):
"""Converts a sequence of subtoken ids to a native string.
Args:
ids: a list of integers in the range [0, vocab_size)
strip_extraneous: bool, whether to strip off extraneous tokens
(EOS and PAD).
Returns:
a native string
"""
if
strip_extraneous
:
ids
=
strip_ids
(
ids
,
list
(
range
(
self
.
_num_reserved_ids
or
0
)))
return
unicode_to_native
(
tokenizer_decode
(
self
.
_subtoken_ids_to_tokens
(
ids
)))
def
decode_list
(
self
,
ids
):
return
[
self
.
_subtoken_id_to_subtoken_string
(
s
)
for
s
in
ids
]
@
property
def
vocab_size
(
self
):
"""The subtoken vocabulary size."""
return
len
(
self
.
_all_subtoken_strings
)
def
_tokens_to_subtoken_ids
(
self
,
tokens
):
"""Converts a list of tokens to a list of subtoken ids.
Args:
tokens: a list of strings.
Returns:
a list of integers in the range [0, vocab_size)
"""
ret
=
[]
for
token
in
tokens
:
ret
.
extend
(
self
.
_token_to_subtoken_ids
(
token
))
return
ret
def
_token_to_subtoken_ids
(
self
,
token
):
"""Converts token to a list of subtoken ids.
Args:
token: a string.
Returns:
a list of integers in the range [0, vocab_size)
"""
cache_location
=
hash
(
token
)
%
self
.
_cache_size
cache_key
,
cache_value
=
self
.
_cache
[
cache_location
]
if
cache_key
==
token
:
return
cache_value
ret
=
self
.
_escaped_token_to_subtoken_ids
(
_escape_token
(
token
,
self
.
_alphabet
))
self
.
_cache
[
cache_location
]
=
(
token
,
ret
)
return
ret
def
_subtoken_ids_to_tokens
(
self
,
subtokens
):
"""Converts a list of subtoken ids to a list of tokens.
Args:
subtokens: a list of integers in the range [0, vocab_size)
Returns:
a list of strings.
"""
concatenated
=
""
.
join
(
[
self
.
_subtoken_id_to_subtoken_string
(
s
)
for
s
in
subtokens
])
split
=
concatenated
.
split
(
"_"
)
ret
=
[]
for
t
in
split
:
if
t
:
unescaped
=
_unescape_token
(
t
+
"_"
)
if
unescaped
:
ret
.
append
(
unescaped
)
return
ret
def
_subtoken_id_to_subtoken_string
(
self
,
subtoken
):
"""Converts a subtoken integer ID to a subtoken string."""
if
0
<=
subtoken
<
self
.
vocab_size
:
return
self
.
_all_subtoken_strings
[
subtoken
]
return
u
""
def
_escaped_token_to_subtoken_strings
(
self
,
escaped_token
):
"""Converts an escaped token string to a list of subtoken strings.
Args:
escaped_token: An escaped token as a unicode string.
Returns:
A list of subtokens as unicode strings.
"""
# NOTE: This algorithm is greedy; it won't necessarily produce the "best"
# list of subtokens.
ret
=
[]
start
=
0
token_len
=
len
(
escaped_token
)
while
start
<
token_len
:
for
end
in
range
(
min
(
token_len
,
start
+
self
.
_max_subtoken_len
),
start
,
-
1
):
subtoken
=
escaped_token
[
start
:
end
]
if
subtoken
in
self
.
_subtoken_string_to_id
:
ret
.
append
(
subtoken
)
start
=
end
break
else
:
# Did not break
# If there is no possible encoding of the escaped token then one of the
# characters in the token is not in the alphabet. This should be
# impossible and would be indicative of a bug.
assert
False
,
"Token substring not found in subtoken vocabulary."
return
ret
def
_escaped_token_to_subtoken_ids
(
self
,
escaped_token
):
"""Converts an escaped token string to a list of subtoken IDs.
Args:
escaped_token: An escaped token as a unicode string.
Returns:
A list of subtoken IDs as integers.
"""
return
[
self
.
_subtoken_string_to_id
[
subtoken
]
for
subtoken
in
self
.
_escaped_token_to_subtoken_strings
(
escaped_token
)
]
@
classmethod
def
build_from_generator
(
cls
,
generator
,
target_size
,
max_subtoken_length
=
None
,
reserved_tokens
=
None
):
"""Builds a SubwordTextEncoder from the generated text.
Args:
generator: yields text.
target_size: int, approximate vocabulary size to create.
max_subtoken_length: Maximum length of a subtoken. If this is not set,
then the runtime and memory use of creating the vocab is quadratic in
the length of the longest token. If this is set, then it is instead
O(max_subtoken_length * length of longest token).
reserved_tokens: List of reserved tokens. The global variable
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
argument is `None`, it will use `RESERVED_TOKENS`.
Returns:
SubwordTextEncoder with `vocab_size` approximately `target_size`.
"""
token_counts
=
collections
.
defaultdict
(
int
)
for
item
in
generator
:
for
tok
in
tokenizer_encode
(
native_to_unicode
(
item
)):
token_counts
[
tok
]
+=
1
encoder
=
cls
.
build_to_target_size
(
target_size
,
token_counts
,
1
,
1e3
,
max_subtoken_length
=
max_subtoken_length
,
reserved_tokens
=
reserved_tokens
)
return
encoder
@
classmethod
def
build_to_target_size
(
cls
,
target_size
,
token_counts
,
min_val
,
max_val
,
max_subtoken_length
=
None
,
reserved_tokens
=
None
,
num_iterations
=
4
):
"""Builds a SubwordTextEncoder that has `vocab_size` near `target_size`.
Uses simple recursive binary search to find a minimum token count that most
closely matches the `target_size`.
Args:
target_size: Desired vocab_size to approximate.
token_counts: A dictionary of token counts, mapping string to int.
min_val: An integer; lower bound for the minimum token count.
max_val: An integer; upper bound for the minimum token count.
max_subtoken_length: Maximum length of a subtoken. If this is not set,
then the runtime and memory use of creating the vocab is quadratic in
the length of the longest token. If this is set, then it is instead
O(max_subtoken_length * length of longest token).
reserved_tokens: List of reserved tokens. The global variable
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
argument is `None`, it will use `RESERVED_TOKENS`.
num_iterations: An integer; how many iterations of refinement.
Returns:
A SubwordTextEncoder instance.
Raises:
ValueError: If `min_val` is greater than `max_val`.
"""
if
min_val
>
max_val
:
raise
ValueError
(
"Lower bound for the minimum token count "
"is greater than the upper bound."
)
if
target_size
<
1
:
raise
ValueError
(
"Target size must be positive."
)
if
reserved_tokens
is
None
:
reserved_tokens
=
RESERVED_TOKENS
def
bisect
(
min_val
,
max_val
):
"""Bisection to find the right size."""
present_count
=
(
max_val
+
min_val
)
//
2
logger
.
info
(
"Trying min_count %d"
%
present_count
)
subtokenizer
=
cls
()
subtokenizer
.
build_from_token_counts
(
token_counts
,
present_count
,
num_iterations
,
max_subtoken_length
=
max_subtoken_length
,
reserved_tokens
=
reserved_tokens
)
# Being within 1% of the target size is ok.
is_ok
=
abs
(
subtokenizer
.
vocab_size
-
target_size
)
*
100
<
target_size
# If min_val == max_val, we can't do any better than this.
if
is_ok
or
min_val
>=
max_val
or
present_count
<
2
:
return
subtokenizer
if
subtokenizer
.
vocab_size
>
target_size
:
other_subtokenizer
=
bisect
(
present_count
+
1
,
max_val
)
else
:
other_subtokenizer
=
bisect
(
min_val
,
present_count
-
1
)
if
other_subtokenizer
is
None
:
return
subtokenizer
if
(
abs
(
other_subtokenizer
.
vocab_size
-
target_size
)
<
abs
(
subtokenizer
.
vocab_size
-
target_size
)):
return
other_subtokenizer
return
subtokenizer
return
bisect
(
min_val
,
max_val
)
def
build_from_token_counts
(
self
,
token_counts
,
min_count
,
num_iterations
=
4
,
reserved_tokens
=
None
,
max_subtoken_length
=
None
):
"""Train a SubwordTextEncoder based on a dictionary of word counts.
Args:
token_counts: a dictionary of Unicode strings to int.
min_count: an integer - discard subtokens with lower counts.
num_iterations: an integer. how many iterations of refinement.
reserved_tokens: List of reserved tokens. The global variable
`RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this
argument is `None`, it will use `RESERVED_TOKENS`.
max_subtoken_length: Maximum length of a subtoken. If this is not set,
then the runtime and memory use of creating the vocab is quadratic in
the length of the longest token. If this is set, then it is instead
O(max_subtoken_length * length of longest token).
Raises:
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
is not clear what the space is being reserved for, or when it will be
filled in.
"""
if
reserved_tokens
is
None
:
reserved_tokens
=
RESERVED_TOKENS
else
:
# There is not complete freedom in replacing RESERVED_TOKENS.
for
default
,
proposed
in
zip
(
RESERVED_TOKENS
,
reserved_tokens
):
if
default
!=
proposed
:
raise
ValueError
(
"RESERVED_TOKENS must be a prefix of "
"reserved_tokens."
)
# Initialize the alphabet. Note, this must include reserved tokens or it can
# result in encoding failures.
alphabet_tokens
=
chain
(
six
.
iterkeys
(
token_counts
),
[
native_to_unicode
(
t
)
for
t
in
reserved_tokens
])
self
.
_init_alphabet_from_tokens
(
alphabet_tokens
)
# Bootstrap the initial list of subtokens with the characters from the
# alphabet plus the escaping characters.
self
.
_init_subtokens_from_list
(
list
(
self
.
_alphabet
),
reserved_tokens
=
reserved_tokens
)
# We build iteratively. On each iteration, we segment all the words,
# then count the resulting potential subtokens, keeping the ones
# with high enough counts for our new vocabulary.
if
min_count
<
1
:
min_count
=
1
for
i
in
range
(
num_iterations
):
logger
.
info
(
"Iteration {0}"
.
format
(
i
))
# Collect all substrings of the encoded token that break along current
# subtoken boundaries.
subtoken_counts
=
collections
.
defaultdict
(
int
)
for
token
,
count
in
six
.
iteritems
(
token_counts
):
iter_start_time
=
time
.
time
()
escaped_token
=
_escape_token
(
token
,
self
.
_alphabet
)
subtokens
=
self
.
_escaped_token_to_subtoken_strings
(
escaped_token
)
start
=
0
for
subtoken
in
subtokens
:
last_position
=
len
(
escaped_token
)
+
1
if
max_subtoken_length
is
not
None
:
last_position
=
min
(
last_position
,
start
+
max_subtoken_length
)
for
end
in
range
(
start
+
1
,
last_position
):
new_subtoken
=
escaped_token
[
start
:
end
]
subtoken_counts
[
new_subtoken
]
+=
count
start
+=
len
(
subtoken
)
iter_time_secs
=
time
.
time
()
-
iter_start_time
if
iter_time_secs
>
0.1
:
logger
.
info
(
u
"Processing token [{0}] took {1} seconds, consider "
"setting Text2TextProblem.max_subtoken_length to a "
"smaller value."
.
format
(
token
,
iter_time_secs
))
# Array of sets of candidate subtoken strings, by length.
len_to_subtoken_strings
=
[]
for
subtoken_string
,
count
in
six
.
iteritems
(
subtoken_counts
):
lsub
=
len
(
subtoken_string
)
if
count
>=
min_count
:
while
len
(
len_to_subtoken_strings
)
<=
lsub
:
len_to_subtoken_strings
.
append
(
set
())
len_to_subtoken_strings
[
lsub
].
add
(
subtoken_string
)
# Consider the candidates longest to shortest, so that if we accept
# a longer subtoken string, we can decrement the counts of its prefixes.
new_subtoken_strings
=
[]
for
lsub
in
range
(
len
(
len_to_subtoken_strings
)
-
1
,
0
,
-
1
):
subtoken_strings
=
len_to_subtoken_strings
[
lsub
]
for
subtoken_string
in
subtoken_strings
:
count
=
subtoken_counts
[
subtoken_string
]
if
count
>=
min_count
:
# Exclude alphabet tokens here, as they must be included later,
# explicitly, regardless of count.
if
subtoken_string
not
in
self
.
_alphabet
:
new_subtoken_strings
.
append
((
count
,
subtoken_string
))
for
l
in
range
(
1
,
lsub
):
subtoken_counts
[
subtoken_string
[:
l
]]
-=
count
# Include the alphabet explicitly to guarantee all strings are encodable.
new_subtoken_strings
.
extend
((
subtoken_counts
.
get
(
a
,
0
),
a
)
for
a
in
self
.
_alphabet
)
new_subtoken_strings
.
sort
(
reverse
=
True
)
# Reinitialize to the candidate vocabulary.
new_subtoken_strings
=
[
subtoken
for
_
,
subtoken
in
new_subtoken_strings
]
if
reserved_tokens
:
escaped_reserved_tokens
=
[
_escape_token
(
native_to_unicode
(
t
),
self
.
_alphabet
)
for
t
in
reserved_tokens
]
new_subtoken_strings
=
escaped_reserved_tokens
+
new_subtoken_strings
self
.
_init_subtokens_from_list
(
new_subtoken_strings
)
logger
.
info
(
"vocab_size = %d"
%
self
.
vocab_size
)
@
property
def
all_subtoken_strings
(
self
):
return
tuple
(
self
.
_all_subtoken_strings
)
def
dump
(
self
):
"""Debugging dump of the current subtoken vocabulary."""
subtoken_strings
=
[(
i
,
s
)
for
s
,
i
in
six
.
iteritems
(
self
.
_subtoken_string_to_id
)]
print
(
u
", "
.
join
(
u
"{0} : '{1}'"
.
format
(
i
,
s
)
for
i
,
s
in
sorted
(
subtoken_strings
)))
def
_init_subtokens_from_list
(
self
,
subtoken_strings
,
reserved_tokens
=
None
):
"""Initialize token information from a list of subtoken strings.
Args:
subtoken_strings: a list of subtokens
reserved_tokens: List of reserved tokens. We must have `reserved_tokens`
as None or the empty list, or else the global variable `RESERVED_TOKENS`
must be a prefix of `reserved_tokens`.
Raises:
ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it
is not clear what the space is being reserved for, or when it will be
filled in.
"""
if
reserved_tokens
is
None
:
reserved_tokens
=
[]
if
reserved_tokens
:
self
.
_all_subtoken_strings
=
reserved_tokens
+
subtoken_strings
else
:
self
.
_all_subtoken_strings
=
subtoken_strings
# we remember the maximum length of any subtoken to avoid having to
# check arbitrarily long strings.
self
.
_max_subtoken_len
=
max
([
len
(
s
)
for
s
in
subtoken_strings
])
self
.
_subtoken_string_to_id
=
{
s
:
i
+
len
(
reserved_tokens
)
for
i
,
s
in
enumerate
(
subtoken_strings
)
if
s
}
# Initialize the cache to empty.
self
.
_cache_size
=
2
**
20
self
.
_cache
=
[(
None
,
None
)]
*
self
.
_cache_size
def
_init_alphabet_from_tokens
(
self
,
tokens
):
"""Initialize alphabet from an iterable of token or subtoken strings."""
# Include all characters from all tokens in the alphabet to guarantee that
# any token can be encoded. Additionally, include all escaping characters.
self
.
_alphabet
=
{
c
for
token
in
tokens
for
c
in
token
}
self
.
_alphabet
|=
_ESCAPE_CHARS
def
_load_from_file_object
(
self
,
f
):
"""Load from a file object.
Args:
f: File object to load vocabulary from
"""
subtoken_strings
=
[]
for
line
in
f
:
s
=
line
.
strip
()
# Some vocab files wrap words in single quotes, but others don't
if
((
s
.
startswith
(
"'"
)
and
s
.
endswith
(
"'"
))
or
(
s
.
startswith
(
"
\"
"
)
and
s
.
endswith
(
"
\"
"
))):
s
=
s
[
1
:
-
1
]
subtoken_strings
.
append
(
native_to_unicode
(
s
))
self
.
_init_subtokens_from_list
(
subtoken_strings
)
self
.
_init_alphabet_from_tokens
(
subtoken_strings
)
def
_load_from_file
(
self
,
filename
):
"""Load from a vocab file."""
if
not
os
.
path
.
isfile
(
filename
):
raise
ValueError
(
"File %s not found"
%
filename
)
with
open
(
filename
)
as
f
:
self
.
_load_from_file_object
(
f
)
def
store_to_file
(
self
,
filename
,
add_single_quotes
=
True
):
with
open
(
filename
,
"w"
)
as
f
:
for
subtoken_string
in
self
.
_all_subtoken_strings
:
if
add_single_quotes
:
f
.
write
(
"'"
+
unicode_to_native
(
subtoken_string
)
+
"'
\n
"
)
else
:
f
.
write
(
unicode_to_native
(
subtoken_string
)
+
"
\n
"
)
class
DataProcessor
():
def
__init__
(
self
,
bert_vocab_path
,
n_ctx
=
512
):
self
.
text_encoder
=
SubwordTextEncoder
(
bert_vocab_path
)
self
.
clf_token
=
self
.
text_encoder
.
decode
(
'Clf'
)
self
.
sep_token
=
self
.
text_encoder
.
decode
(
'Sep'
)
self
.
A_token
=
self
.
text_encoder
.
decode
(
'A'
)
self
.
B_token
=
self
.
text_encoder
.
decode
(
'B'
)
self
.
n_ctx
=
512
def
encode_single_sentences
(
self
,
input_sentences
:
List
[
str
])
->
np
.
array
:
""" Prepare a torch.Tensor of inputs for BERT model from a string.
""" Prepare a torch.Tensor of inputs for BERT model from a string.
Args:
Args:
input_sentences: list of
input_sentences: list of single sentences (always considered as a sentence_A type)
- pairs of tokenized sentences (sentence_A, sentence_B) or
- tokenized sentences (will be considered as sentence_A only)
Return:
Return:
Numpy array of formated inputs for BERT model
Numpy array of formated inputs for BERT model
"""
"""
batch_size
=
sum
(
min
(
len
(
x
),
n_perso_permute
)
for
x
in
X1
)
batch_size
=
len
(
input_sentences
)
input_
mask
=
np
.
zeros
((
n_
batch
,
n_cands
,
n_ctx
),
dtype
=
np
.
floa
t32
)
input_
array
=
np
.
zeros
((
batch
_size
,
self
.
n_ctx
,
3
),
dtype
=
np
.
in
t32
)
input_
array
=
np
.
zeros
((
n_
batch
,
n_cands
,
n_ctx
,
3
),
dtype
=
np
.
in
t32
)
input_
mask
=
np
.
zeros
((
batch
_size
,
self
.
n_ctx
),
dtype
=
np
.
floa
t32
)
i
=
0
i
=
0
for
tokenized_input
in
input_sentences
:
for
sentence
in
input_sentences
:
x1j
,
lxj
,
lperso
,
lhisto
,
dialog_embed
=
format_transformer_input
(
x1
,
x2
,
xcand_j
,
text_encoder
,
tokenized_sentence
=
self
.
text_encoder
.
encode
(
sentence
)
dialog_embed_mode
,
max_len
=
max_len
,
x1j
=
[
self
.
clf_token
]
+
tokenized_sentence
add_start_stop
=
True
)
lxj
=
len
(
x1j
)
lmj
=
len
(
xcand_j
[:
max_len
])
+
1
input_array
[
i
,
:
lxj
,
0
]
=
x1j
xmb
[
i
,
j
,
:
lxj
,
0
]
=
x1j
input_array
[
i
,
:
lxj
,
0
]
=
[
self
.
A_token
]
*
lxj
if
dialog_embed_mode
==
1
or
dialog_embed_mode
==
2
:
input_array
[
i
,
:,
1
]
=
np
.
arange
(
self
.
n_vocab
+
self
.
n_special
,
self
.
n_vocab
+
self
.
n_special
+
self
.
n_ctx
)
xmb
[
i
,
j
,
:
lxj
,
2
]
=
dialog_embed
input_mask
[
i
,
:
lxj
]
=
1
mmb
[
i
,
j
,
:
lxj
]
=
1
if
fix_lm_index
:
# Take one before so we don't predict from classify token...
mmb_eval
[
i
,
j
,
(
lxj
-
lmj
-
1
):
lxj
-
1
]
=
1
# This one only mask the response so we get the perplexity on the response only
else
:
mmb_eval
[
i
,
j
,
(
lxj
-
lmj
):
lxj
]
=
1
# This one only mask the response so we get the perplexity on the response only
xmb
[
i
,
j
,
:,
1
]
=
np
.
arange
(
n_vocab
+
n_special
,
n_vocab
+
n_special
+
n_ctx
)
i
+=
1
i
+=
1
return
input_array
,
input_mask
return
input_array
,
input_mask
\ No newline at end of file
example.py
deleted
100644 → 0
View file @
ccce66be
"""
Show how to use HuggingFace's PyTorch implementation of Google's BERT Model.
"""
from
.bert_model
import
BERT
from
.prepare_inputs
import
DataPreprocessor
bert_model
=
BERT
()
bert_model
.
load_from
(
'.'
)
data_processor
=
DataProcessor
(
encoder_file_path
=
'.'
)
input_sentence
=
"We are playing with the BERT model."
print
(
"BERT inputs: {}"
.
format
(
input_sentence
))
tensor_input
=
data_processor
.
encode
(
input_sentence
)
tensor_output
=
bert_model
(
prepared_input
)
output_sentence
=
data_processor
.
decode
(
tensor_output
)
print
(
"BERT predicted: {}"
.
format
(
output_sentence
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment