Unverified Commit 12d66b47 authored by Alara Dirik's avatar Alara Dirik Committed by GitHub
Browse files

Add OWL-ViT model for zero-shot object detection (#17938)

* add owlvit model skeleton

* add class and box predictor heads

* convert modified flax clip to pytorch

* fix box and class predictors

* add OwlViTImageTextEmbedder

* convert class and box head checkpoints

* convert image text embedder checkpoints

* add object detection head

* fix bugs

* update conversion script

* update conversion script

* fix q,v,k,out weight conversion conversion

* add owlvit object detection output

* fix bug in image embedder

* fix bugs in text embedder

* fix positional embeddings

* fix bug in inference mode vision pooling

* update docs, init tokenizer and processor files

* support batch processing

* add OwlViTProcessor

* remove merge conflicts

* readd owlvit imports

* fix bug in OwlViTProcessor imports

* fix bugs in processor

* update docs

* fix bugs in processor

* update owlvit docs

* add OwlViTFeatureExtractor

* style changes, add postprocess method to feature extractor

* add feature extractor and processor tests

* add object detection tests

* update conversion script

* update config paths

* update config paths

* fix configuration paths and bugs

* fix bugs in OwlViT tests

* add import checks to processor

* fix docs and minor issues

* fix docs and minor issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* fix bugs and issues

* update docs and examples

* fix bugs and issues

* update conversion script, fix positional embeddings

* process 2D input ids, update tests

* fix style and quality issues

* update docs

* update docs and imports

* update OWL-ViT index.md

* fix bug in OwlViT feature ext tests

* fix code examples, return_dict by default

* return_dict by default

* minor fixes, add tests to processor

* small fixes

* add output_attentions arg to main model

* fix bugs

* remove output_hidden_states arg from main model

* update self.config variables

* add option to return last_hidden_states

* fix bug in config variables

* fix copied from statements

* fix small issues and bugs

* fix bugs

* fix bugs, support greyscale images

* run fixup

* update repo name

* merge OwlViTImageTextEmbedder with obj detection head

* fix merge conflict

* fix merge conflict

* make fixup

* fix bugs

* fix bugs

* add additional processor test
parent 99eb9b52
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for OWL-ViT
"""
from typing import List
import numpy as np
from transformers import is_flax_available, is_tf_available, is_torch_available
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class OwlViTProcessor(ProcessorMixin):
r"""
Constructs an OWL-ViT processor which wraps [`OwlViTFeatureExtractor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`]
into a single processor that interits both the feature extractor and tokenizer functionalities. See the
[`~OwlViTProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information.
Args:
feature_extractor ([`OwlViTFeatureExtractor`]):
The feature extractor is a required input.
tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]):
The tokenizer is a required input.
"""
feature_extractor_class = "OwlViTFeatureExtractor"
tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, text=None, images=None, padding="max_length", return_tensors="np", **kwargs):
"""
Main method to prepare for the model one or several text(s) and image(s). This method forwards the `text` and
`kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode:
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPFeatureExtractor's [`~CLIPFeatureExtractor.__call__`] if `images` is not `None`. Please refer to the
doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`,
`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify at least one text or image. Both cannot be none.")
if text is not None:
if isinstance(text, str) or (isinstance(text, List) and not isinstance(text[0], List)):
encodings = [self.tokenizer(text, padding=padding, return_tensors=return_tensors, **kwargs)]
elif isinstance(text, List) and isinstance(text[0], List):
encodings = []
# Maximum number of queries across batch
max_num_queries = max([len(t) for t in text])
# Pad all batch samples to max number of text queries
for t in text:
if len(t) != max_num_queries:
t = t + [" "] * (max_num_queries - len(t))
encoding = self.tokenizer(t, padding=padding, return_tensors=return_tensors, **kwargs)
encodings.append(encoding)
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings")
if return_tensors == "np":
input_ids = np.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = np.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
input_ids = jnp.concatenate([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = jnp.concatenate([encoding["attention_mask"] for encoding in encodings], axis=0)
elif return_tensors == "pt" and is_torch_available():
import torch
input_ids = torch.cat([encoding["input_ids"] for encoding in encodings], dim=0)
attention_mask = torch.cat([encoding["attention_mask"] for encoding in encodings], dim=0)
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
input_ids = tf.stack([encoding["input_ids"] for encoding in encodings], axis=0)
attention_mask = tf.stack([encoding["attention_mask"] for encoding in encodings], axis=0)
else:
raise ValueError("Target return tensor type could not be returned")
encoding = BatchEncoding()
encoding["input_ids"] = input_ids
encoding["attention_mask"] = attention_mask
if images is not None:
image_features = self.feature_extractor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
......@@ -3459,6 +3459,44 @@ class OPTPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class OwlViTForObjectDetection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTTextModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class OwlViTVisionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusForCausalLM(metaclass=DummyObject):
_backends = ["torch"]
......
......@@ -122,6 +122,13 @@ class MobileViTFeatureExtractor(metaclass=DummyObject):
requires_backends(self, ["vision"])
class OwlViTFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class PerceiverFeatureExtractor(metaclass=DummyObject):
_backends = ["vision"]
......
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import OwlViTFeatureExtractor
class OwlViTFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=20,
do_center_crop=True,
crop_size=18,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_feat_extract_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
@require_torch
@require_vision
class OwlViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = OwlViTFeatureExtractor if is_vision_available() else None
def setUp(self):
self.feature_extract_tester = OwlViTFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "size"))
self.assertTrue(hasattr(feature_extractor, "do_center_crop"))
self.assertTrue(hasattr(feature_extractor, "center_crop"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_convert_rgb"))
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
def test_call_numpy(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
def test_call_pytorch(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
1,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
self.feature_extract_tester.crop_size,
self.feature_extract_tester.crop_size,
),
)
This diff is collapsed.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import OwlViTFeatureExtractor, OwlViTProcessor
@require_vision
class OwlViTProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
# fmt: off
vocab = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
feature_extractor_map = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48145466, 0.4578275, 0.40821073],
"image_std": [0.26862954, 0.26130258, 0.27577711],
}
self.feature_extractor_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extractor_file, "w", encoding="utf-8") as fp:
json.dump(feature_extractor_map, fp)
def get_tokenizer(self, **kwargs):
return CLIPTokenizer.from_pretrained(self.tmpdirname, pad_token="!", **kwargs)
def get_rust_tokenizer(self, **kwargs):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, pad_token="!", **kwargs)
def get_feature_extractor(self, **kwargs):
return OwlViTFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_image_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
return image_inputs
def test_save_load_pretrained_default(self):
tokenizer_slow = self.get_tokenizer()
tokenizer_fast = self.get_rust_tokenizer()
feature_extractor = self.get_feature_extractor()
processor_slow = OwlViTProcessor(tokenizer=tokenizer_slow, feature_extractor=feature_extractor)
processor_slow.save_pretrained(self.tmpdirname)
processor_slow = OwlViTProcessor.from_pretrained(self.tmpdirname, use_fast=False)
processor_fast = OwlViTProcessor(tokenizer=tokenizer_fast, feature_extractor=feature_extractor)
processor_fast.save_pretrained(self.tmpdirname)
processor_fast = OwlViTProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor_slow.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertEqual(processor_fast.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor_slow.feature_extractor, OwlViTFeatureExtractor)
self.assertIsInstance(processor_fast.feature_extractor, OwlViTFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = OwlViTProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False)
processor = OwlViTProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, OwlViTFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
image_input = self.prepare_image_inputs()
input_feat_extract = feature_extractor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "lower newer"
encoded_processor = processor(text=input_str, return_tensors="np")
encoded_tok = tokenizer(input_str, return_tensors="np")
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key][0].tolist(), encoded_processor[key][0].tolist())
def test_processor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_with_text_list(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_text = ["cat", "nasa badge"]
inputs = processor(text=input_text)
seq_length = 16
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (2, seq_length))
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_with_nested_text_list(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_texts = [["cat", "nasa badge"], ["person"]]
inputs = processor(text=input_texts)
seq_length = 16
batch_size = len(input_texts)
num_max_text_queries = max([len(texts) for texts in input_texts])
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (batch_size * num_max_text_queries, seq_length))
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_processor_case(self):
model_name = "google/owlvit-base-patch32"
processor = OwlViTProcessor.from_pretrained(model_name)
input_texts = ["cat", "nasa badge"]
inputs = processor(text=input_texts)
seq_length = 16
input_ids = inputs["input_ids"]
predicted_ids = [
[49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
self.assertEqual(inputs["input_ids"].shape, (2, seq_length))
self.assertListEqual(list(input_ids[0]), predicted_ids[0])
self.assertListEqual(list(input_ids[1]), predicted_ids[1])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = OwlViTProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
......@@ -41,6 +41,7 @@ _re_checkpoint = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)")
CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK = {
"CLIPConfig",
"OwlViTConfig",
"GroupViTConfig",
"DecisionTransformerConfig",
"EncoderDecoderConfig",
......
......@@ -166,6 +166,9 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"OpenAIGPTDoubleHeadsModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
"RagModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment