Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
123b597f
Unverified
Commit
123b597f
authored
Jun 02, 2021
by
Gunjan Chhablani
Committed by
GitHub
Jun 02, 2021
Browse files
Fix examples (#11990)
parent
88ca6a23
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
1 deletion
+15
-1
src/transformers/models/visual_bert/modeling_visual_bert.py
src/transformers/models/visual_bert/modeling_visual_bert.py
+15
-1
No files found.
src/transformers/models/visual_bert/modeling_visual_bert.py
View file @
123b597f
...
...
@@ -728,6 +728,9 @@ class VisualBertModel(VisualBertPreTrainedModel):
return_dict
=
None
,
):
r
"""
Returns:
Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image.
...
...
@@ -1016,6 +1019,7 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
@
add_start_docstrings_to_model_forward
(
VISUAL_BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, num_choices, sequence_length"
)
)
@
replace_return_docstrings
(
output_type
=
MultipleChoiceModelOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
...
...
@@ -1039,6 +1043,8 @@ class VisualBertForMultipleChoice(VisualBertPreTrainedModel):
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors.
(See :obj:`input_ids` above)
Returns:
Example::
>>> from transformers import BertTokenizer, VisualBertForMultipleChoice
...
...
@@ -1160,6 +1166,7 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_model_forward
(
VISUAL_BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
...
...
@@ -1182,6 +1189,7 @@ class VisualBertForQuestionAnswering(VisualBertPreTrainedModel):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. A KLDivLoss is computed between the labels and the returned logits.
Returns:
Example::
...
...
@@ -1280,6 +1288,7 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_model_forward
(
VISUAL_BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
...
...
@@ -1302,6 +1311,8 @@ class VisualBertForVisualReasoning(VisualBertPreTrainedModel):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. A classification loss is computed (Cross-Entropy) against these labels.
Returns:
Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
...
...
@@ -1433,6 +1444,7 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
self
.
init_weights
()
@
add_start_docstrings_to_model_forward
(
VISUAL_BERT_INPUTS_DOCSTRING
.
format
(
"batch_size, sequence_length"
))
@
replace_return_docstrings
(
output_type
=
SequenceClassifierOutput
,
config_class
=
_CONFIG_FOR_DOC
)
def
forward
(
self
,
input_ids
=
None
,
...
...
@@ -1459,6 +1471,8 @@ class VisualBertForRegionToPhraseAlignment(VisualBertPreTrainedModel):
Labels for computing the masked language modeling loss. KLDivLoss is computed against these labels and
the outputs from the attention layer.
Returns:
Example::
>>> # Assumption: `get_visual_embeddings(image)` gets the visual embeddings of the image in the batch.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment