Unverified Commit 1073a2bd authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Switch `return_dict` to `True` by default. (#8530)

* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Run on the real suite

* Fix slow tests
parent 0d0a0785
......@@ -115,7 +115,6 @@ class T5ModelTester:
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
return_dict=True,
)
return (
......
......@@ -121,7 +121,6 @@ class TFAlbertModelTester:
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -182,7 +182,6 @@ class TFBartHeadTests(unittest.TestCase):
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
return_dict=True,
decoder_start_token_id=2,
)
return config, input_ids, batch_size
......@@ -206,7 +205,6 @@ class TFBartHeadTests(unittest.TestCase):
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
return_dict=True,
)
lm_model = TFBartForConditionalGeneration(config)
context = tf.fill((7, 2), 4)
......@@ -356,7 +354,7 @@ class FasterTFBartModelIntegrationTests(unittest.TestCase):
padding="longest",
truncation=True,
)
features = self.xsum_1_1_model.get_encoder()(**batch, return_dict=True).last_hidden_state
features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state
import numpy as np
expected = np.array([[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]])
......
......@@ -120,7 +120,6 @@ class TFBertModelTester:
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -39,7 +39,7 @@ class TFCamembertModelIntegrationTest(unittest.TestCase):
dtype=tf.int32,
) # J'aime le camembert !"
output = model(input_ids, return_dict=True)["last_hidden_state"]
output = model(input_ids)["last_hidden_state"]
expected_shape = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
......
......@@ -284,7 +284,7 @@ class TFModelTesterMixin:
if isinstance(after_outputs, tf.Tensor):
out_1 = after_outputs.numpy()
elif isinstance(after_outputs, dict):
out_1 = after_outputs[list(after_outputs.keys())[0]]
out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
else:
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
......
......@@ -94,7 +94,6 @@ class TFCTRLModelTester(object):
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range,
return_dict=True,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
......@@ -91,7 +91,6 @@ class TFDistilBertModelTester:
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -97,7 +97,6 @@ class TFElectraModelTester:
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -114,7 +114,6 @@ class TFFlaubertModelTester:
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
return_dict=True,
)
return (
......
......@@ -137,7 +137,6 @@ class TFFunnelModelTester:
activation_dropout=self.activation_dropout,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
return_dict=True,
)
return (
......
......@@ -104,7 +104,6 @@ class TFGPT2ModelTester:
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
return_dict=True,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
......@@ -594,7 +594,9 @@ class TFLongformerModelIntegrationTest(unittest.TestCase):
# 'Hello world! ' repeated 1000 times
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)
loss, prediction_scores = model(input_ids, labels=input_ids)
output = model(input_ids, labels=input_ids)
loss = output.loss
prediction_scores = output.logits
expected_loss = tf.constant(0.0073798)
expected_prediction_scores_sum = tf.constant(-610476600.0)
......
......@@ -297,7 +297,6 @@ class TFLxmertModelTester(object):
matched_label=matched_label,
ans=ans,
output_attentions=output_attentions,
return_dict=True,
)
result = model(
input_ids,
......@@ -352,7 +351,6 @@ class TFLxmertModelTester(object):
matched_label=matched_label,
ans=ans,
output_attentions=not output_attentions,
return_dict=True,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
......@@ -695,7 +693,8 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
model = tf.keras.models.load_model(tmpdirname)
outputs = model(class_inputs_dict)
language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1]
language_hidden_states = outputs["language_hidden_states"]
vision_hidden_states = outputs["vision_hidden_states"]
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)
......@@ -731,11 +730,9 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
model = tf.keras.models.load_model(tmpdirname)
outputs = model(class_inputs_dict)
language_attentions, vision_attentions, cross_encoder_attentions = (
outputs[-3],
outputs[-2],
outputs[-1],
)
language_attentions = outputs["language_attentions"]
vision_attentions = outputs["vision_attentions"]
cross_encoder_attentions = outputs["cross_encoder_attentions"]
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
......
......@@ -139,7 +139,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase):
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
embedding_size=self.embedding_size,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -99,7 +99,6 @@ class TFOpenAIGPTModelTester:
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range,
return_dict=True,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
......@@ -97,7 +97,6 @@ class TFRobertaModelTester:
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
......@@ -78,7 +78,6 @@ class TFT5ModelTester:
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id,
return_dict=True,
)
return (config, input_ids, input_mask, token_labels)
......
......@@ -77,7 +77,6 @@ class TFTransfoXLModelTester:
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
return_dict=True,
)
return (config, input_ids_1, input_ids_2, lm_labels)
......
......@@ -114,7 +114,6 @@ class TFXLMModelTester:
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
return_dict=True,
)
return (
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment