Unverified Commit 1073a2bd authored by Sylvain Gugger's avatar Sylvain Gugger Committed by GitHub
Browse files

Switch `return_dict` to `True` by default. (#8530)

* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Use the CI to identify failing tests

* Remove from all examples and tests

* More default switch

* Fixes

* More test fixes

* More fixes

* Last fixes hopefully

* Run on the real suite

* Fix slow tests
parent 0d0a0785
...@@ -115,7 +115,6 @@ class T5ModelTester: ...@@ -115,7 +115,6 @@ class T5ModelTester:
bos_token_id=self.pad_token_id, bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id, pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id, decoder_start_token_id=self.decoder_start_token_id,
return_dict=True,
) )
return ( return (
......
...@@ -121,7 +121,6 @@ class TFAlbertModelTester: ...@@ -121,7 +121,6 @@ class TFAlbertModelTester:
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
return_dict=True,
) )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -182,7 +182,6 @@ class TFBartHeadTests(unittest.TestCase): ...@@ -182,7 +182,6 @@ class TFBartHeadTests(unittest.TestCase):
eos_token_id=2, eos_token_id=2,
pad_token_id=1, pad_token_id=1,
bos_token_id=0, bos_token_id=0,
return_dict=True,
decoder_start_token_id=2, decoder_start_token_id=2,
) )
return config, input_ids, batch_size return config, input_ids, batch_size
...@@ -206,7 +205,6 @@ class TFBartHeadTests(unittest.TestCase): ...@@ -206,7 +205,6 @@ class TFBartHeadTests(unittest.TestCase):
encoder_ffn_dim=32, encoder_ffn_dim=32,
decoder_ffn_dim=32, decoder_ffn_dim=32,
max_position_embeddings=48, max_position_embeddings=48,
return_dict=True,
) )
lm_model = TFBartForConditionalGeneration(config) lm_model = TFBartForConditionalGeneration(config)
context = tf.fill((7, 2), 4) context = tf.fill((7, 2), 4)
...@@ -356,7 +354,7 @@ class FasterTFBartModelIntegrationTests(unittest.TestCase): ...@@ -356,7 +354,7 @@ class FasterTFBartModelIntegrationTests(unittest.TestCase):
padding="longest", padding="longest",
truncation=True, truncation=True,
) )
features = self.xsum_1_1_model.get_encoder()(**batch, return_dict=True).last_hidden_state features = self.xsum_1_1_model.get_encoder()(**batch).last_hidden_state
import numpy as np import numpy as np
expected = np.array([[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]]) expected = np.array([[-0.0828, -0.0251, -0.0674], [0.1277, 0.3311, -0.0255], [0.2613, -0.0840, -0.2763]])
......
...@@ -120,7 +120,6 @@ class TFBertModelTester: ...@@ -120,7 +120,6 @@ class TFBertModelTester:
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
return_dict=True,
) )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -39,7 +39,7 @@ class TFCamembertModelIntegrationTest(unittest.TestCase): ...@@ -39,7 +39,7 @@ class TFCamembertModelIntegrationTest(unittest.TestCase):
dtype=tf.int32, dtype=tf.int32,
) # J'aime le camembert !" ) # J'aime le camembert !"
output = model(input_ids, return_dict=True)["last_hidden_state"] output = model(input_ids)["last_hidden_state"]
expected_shape = tf.TensorShape((1, 10, 768)) expected_shape = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape, expected_shape) self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice. # compare the actual values for a slice.
......
...@@ -284,7 +284,7 @@ class TFModelTesterMixin: ...@@ -284,7 +284,7 @@ class TFModelTesterMixin:
if isinstance(after_outputs, tf.Tensor): if isinstance(after_outputs, tf.Tensor):
out_1 = after_outputs.numpy() out_1 = after_outputs.numpy()
elif isinstance(after_outputs, dict): elif isinstance(after_outputs, dict):
out_1 = after_outputs[list(after_outputs.keys())[0]] out_1 = after_outputs[list(after_outputs.keys())[0]].numpy()
else: else:
out_1 = after_outputs[0].numpy() out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy() out_2 = outputs[0].numpy()
......
...@@ -94,7 +94,6 @@ class TFCTRLModelTester(object): ...@@ -94,7 +94,6 @@ class TFCTRLModelTester(object):
n_ctx=self.max_position_embeddings, n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size, # type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range, # initializer_range=self.initializer_range,
return_dict=True,
) )
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
...@@ -91,7 +91,6 @@ class TFDistilBertModelTester: ...@@ -91,7 +91,6 @@ class TFDistilBertModelTester:
attention_dropout=self.attention_probs_dropout_prob, attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
return_dict=True,
) )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -97,7 +97,6 @@ class TFElectraModelTester: ...@@ -97,7 +97,6 @@ class TFElectraModelTester:
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
return_dict=True,
) )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -114,7 +114,6 @@ class TFFlaubertModelTester: ...@@ -114,7 +114,6 @@ class TFFlaubertModelTester:
summary_type=self.summary_type, summary_type=self.summary_type,
use_proj=self.use_proj, use_proj=self.use_proj,
bos_token_id=self.bos_token_id, bos_token_id=self.bos_token_id,
return_dict=True,
) )
return ( return (
......
...@@ -137,7 +137,6 @@ class TFFunnelModelTester: ...@@ -137,7 +137,6 @@ class TFFunnelModelTester:
activation_dropout=self.activation_dropout, activation_dropout=self.activation_dropout,
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
return_dict=True,
) )
return ( return (
......
...@@ -104,7 +104,6 @@ class TFGPT2ModelTester: ...@@ -104,7 +104,6 @@ class TFGPT2ModelTester:
# initializer_range=self.initializer_range # initializer_range=self.initializer_range
bos_token_id=self.bos_token_id, bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id, eos_token_id=self.eos_token_id,
return_dict=True,
) )
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
...@@ -594,7 +594,9 @@ class TFLongformerModelIntegrationTest(unittest.TestCase): ...@@ -594,7 +594,9 @@ class TFLongformerModelIntegrationTest(unittest.TestCase):
# 'Hello world! ' repeated 1000 times # 'Hello world! ' repeated 1000 times
input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32) input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)
loss, prediction_scores = model(input_ids, labels=input_ids) output = model(input_ids, labels=input_ids)
loss = output.loss
prediction_scores = output.logits
expected_loss = tf.constant(0.0073798) expected_loss = tf.constant(0.0073798)
expected_prediction_scores_sum = tf.constant(-610476600.0) expected_prediction_scores_sum = tf.constant(-610476600.0)
......
...@@ -297,7 +297,6 @@ class TFLxmertModelTester(object): ...@@ -297,7 +297,6 @@ class TFLxmertModelTester(object):
matched_label=matched_label, matched_label=matched_label,
ans=ans, ans=ans,
output_attentions=output_attentions, output_attentions=output_attentions,
return_dict=True,
) )
result = model( result = model(
input_ids, input_ids,
...@@ -352,7 +351,6 @@ class TFLxmertModelTester(object): ...@@ -352,7 +351,6 @@ class TFLxmertModelTester(object):
matched_label=matched_label, matched_label=matched_label,
ans=ans, ans=ans,
output_attentions=not output_attentions, output_attentions=not output_attentions,
return_dict=True,
) )
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
...@@ -695,7 +693,8 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -695,7 +693,8 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
model = tf.keras.models.load_model(tmpdirname) model = tf.keras.models.load_model(tmpdirname)
outputs = model(class_inputs_dict) outputs = model(class_inputs_dict)
language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1] language_hidden_states = outputs["language_hidden_states"]
vision_hidden_states = outputs["vision_hidden_states"]
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1) self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1) self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)
...@@ -731,11 +730,9 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -731,11 +730,9 @@ class TFLxmertModelTest(TFModelTesterMixin, unittest.TestCase):
model = tf.keras.models.load_model(tmpdirname) model = tf.keras.models.load_model(tmpdirname)
outputs = model(class_inputs_dict) outputs = model(class_inputs_dict)
language_attentions, vision_attentions, cross_encoder_attentions = ( language_attentions = outputs["language_attentions"]
outputs[-3], vision_attentions = outputs["vision_attentions"]
outputs[-2], cross_encoder_attentions = outputs["cross_encoder_attentions"]
outputs[-1],
)
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"]) self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"]) self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
......
...@@ -139,7 +139,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -139,7 +139,6 @@ class TFMobileBertModelTest(TFModelTesterMixin, unittest.TestCase):
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
embedding_size=self.embedding_size, embedding_size=self.embedding_size,
return_dict=True,
) )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -99,7 +99,6 @@ class TFOpenAIGPTModelTester: ...@@ -99,7 +99,6 @@ class TFOpenAIGPTModelTester:
n_ctx=self.max_position_embeddings, n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size, # type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range, # initializer_range=self.initializer_range,
return_dict=True,
) )
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
......
...@@ -97,7 +97,6 @@ class TFRobertaModelTester: ...@@ -97,7 +97,6 @@ class TFRobertaModelTester:
max_position_embeddings=self.max_position_embeddings, max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size, type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range, initializer_range=self.initializer_range,
return_dict=True,
) )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
......
...@@ -78,7 +78,6 @@ class TFT5ModelTester: ...@@ -78,7 +78,6 @@ class TFT5ModelTester:
bos_token_id=self.pad_token_id, bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id, pad_token_id=self.pad_token_id,
decoder_start_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id,
return_dict=True,
) )
return (config, input_ids, input_mask, token_labels) return (config, input_ids, input_mask, token_labels)
......
...@@ -77,7 +77,6 @@ class TFTransfoXLModelTester: ...@@ -77,7 +77,6 @@ class TFTransfoXLModelTester:
div_val=self.div_val, div_val=self.div_val,
n_layer=self.num_hidden_layers, n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id, eos_token_id=self.eos_token_id,
return_dict=True,
) )
return (config, input_ids_1, input_ids_2, lm_labels) return (config, input_ids_1, input_ids_2, lm_labels)
......
...@@ -114,7 +114,6 @@ class TFXLMModelTester: ...@@ -114,7 +114,6 @@ class TFXLMModelTester:
summary_type=self.summary_type, summary_type=self.summary_type,
use_proj=self.use_proj, use_proj=self.use_proj,
bos_token_id=self.bos_token_id, bos_token_id=self.bos_token_id,
return_dict=True,
) )
return ( return (
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment