Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
0f6017be
Commit
0f6017be
authored
Dec 26, 2019
by
patrickvonplaten
Browse files
improve comments for examples
parent
87c8fca9
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
2 additions
and
2 deletions
+2
-2
src/transformers/modeling_utils.py
src/transformers/modeling_utils.py
+2
-2
No files found.
src/transformers/modeling_utils.py
View file @
0f6017be
...
...
@@ -614,7 +614,7 @@ class PreTrainedModel(nn.Module):
model = AutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, do_sample=True, num_beams=5, num_return_sequences=3) # generate 3 independent sequences using beam search decoding (5 beams) from initial context 'The dog'
outputs = model.generate(input_ids=input_ids, do_sample=True, num_beams=5, num_return_sequences=3
, temperature=1.5
) # generate 3 independent sequences using beam search decoding (5 beams)
with sampling
from initial context 'The dog'
for i in range(3): # 3 output sequences were generated
print('Generated {}: {}'.format(i, tokenizer.decode(outputs[0][i], skip_special_tokens=True)))
...
...
@@ -622,7 +622,7 @@ class PreTrainedModel(nn.Module):
model = AutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache.
input_context = 'The dog'
input_ids = torch.tensor(tokenizer.encode(input_context)).unsqueeze(0) # encode input context
outputs = model.generate(input_ids=input_ids, max_length=40,
do_sample=True,
temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using beam search decoding (3 beams)
outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, bos_token_id=tokenizer.bos_token_id, eos_token_ids=tokenizer.eos_token_id, num_beams=3) # generate sequences using
greedy
beam search decoding (3 beams)
print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True)))
tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment