To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/automatic-speech-recognition)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/audio-classification)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/image-classification)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/text-generation)
@@ -25,17 +25,6 @@ This guide will show you how to:
1. Finetune [BERT](https://huggingface.co/google-bert/bert-base-uncased) on the `regular` configuration of the [SWAG](https://huggingface.co/datasets/swag) dataset to select the best answer given multiple options and some context.
2. Use your finetuned model for inference.
<Tip>
The task illustrated in this tutorial is supported by the following model architectures:
<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/object-detection)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/question-answering)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/image-segmentation)
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/text-classification).
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/token-classification).
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/video-classification).
@@ -30,8 +30,6 @@ Esta guía te mostrará cómo realizar fine-tuning [DistilGPT2](https://huggingf
<Tip>
Puedes realizar fine-tuning a otras arquitecturas para modelos de lenguaje como [GPT-Neo](https://huggingface.co/EleutherAI/gpt-neo-125M), [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) y [BERT](https://huggingface.co/google-bert/bert-base-uncased) siguiendo los mismos pasos presentados en esta guía!
Mira la [página de tarea](https://huggingface.co/tasks/text-generation) para generación de texto y la [página de tarea](https://huggingface.co/tasks/fill-mask) para modelos de lenguajes por enmascaramiento para obtener más información sobre los modelos, datasets, y métricas asociadas.