Commit 0c5a4fe9 authored by VictorSanh's avatar VictorSanh
Browse files

modify from_pretrained for OpenAIGPT

parent 372a5c1c
......@@ -419,9 +419,7 @@ class OpenAIGPTPreTrainedModel(nn.Module):
pass
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
def from_pretrained(cls, pretrained_model_name_or_path, num_special_tokens=None, *inputs, **kwargs):
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
......@@ -434,14 +432,20 @@ class OpenAIGPTPreTrainedModel(nn.Module):
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `openai-gpt-config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
*inputs, **kwargs: additional input for the specific OpenAI-GPT class
"""
state_dict = kwargs.get('state_dict', None)
kwargs.pop('state_dict', None)
cache_dir = kwargs.get('cache_dir', None)
kwargs.pop('cache_dir', None)
from_tf = kwargs.get('from_tf', False)
kwargs.pop('from_tf', None)
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment