Commit 0bab55d5 authored by thomwolf's avatar thomwolf
Browse files

[BIG] name change

parent 9113b50c
from pytorch_pretrained_bert.tokenization_bert import BertTokenizer
from pytorch_pretrained_bert.modeling_bert import (
from pytorch_transformers.tokenization_bert import BertTokenizer
from pytorch_transformers.modeling_bert import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
......@@ -86,7 +86,7 @@ def bertTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
......@@ -106,7 +106,7 @@ def bertModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -115,7 +115,7 @@ def bertModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertModel', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertModel', 'bert-base-cased')
>>> model.eval()
# Predict hidden states features for each layer
>>> with torch.no_grad():
......@@ -135,7 +135,7 @@ def bertForNextSentencePrediction(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -144,7 +144,7 @@ def bertForNextSentencePrediction(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForNextSentencePrediction
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForNextSentencePrediction', 'bert-base-cased')
>>> model.eval()
# Predict the next sentence classification logits
>>> with torch.no_grad():
......@@ -165,7 +165,7 @@ def bertForPreTraining(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -173,7 +173,7 @@ def bertForPreTraining(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForPreTraining
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForPreTraining', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForPreTraining', 'bert-base-cased')
>>> masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
......@@ -189,7 +189,7 @@ def bertForMaskedLM(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -200,7 +200,7 @@ def bertForMaskedLM(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForMaskedLM
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMaskedLM', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMaskedLM', 'bert-base-cased')
>>> model.eval()
# Predict all tokens
>>> with torch.no_grad():
......@@ -231,7 +231,7 @@ def bertForSequenceClassification(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -240,7 +240,7 @@ def bertForSequenceClassification(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForSequenceClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForSequenceClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the sequence classification logits
>>> with torch.no_grad():
......@@ -266,7 +266,7 @@ def bertForMultipleChoice(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -275,7 +275,7 @@ def bertForMultipleChoice(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens, indexed_tokens]).unsqueeze(0)
>>> segments_tensors = torch.tensor([segments_ids, segments_ids]).unsqueeze(0)
# Load bertForMultipleChoice
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForMultipleChoice', 'bert-base-cased', num_choices=2)
>>> model.eval()
# Predict the multiple choice logits
>>> with torch.no_grad():
......@@ -299,7 +299,7 @@ def bertForQuestionAnswering(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -308,7 +308,7 @@ def bertForQuestionAnswering(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForQuestionAnswering
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForQuestionAnswering', 'bert-base-cased')
>>> model.eval()
# Predict the start and end positions logits
>>> with torch.no_grad():
......@@ -338,7 +338,7 @@ def bertForTokenClassification(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
# Prepare tokenized input
>>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -347,7 +347,7 @@ def bertForTokenClassification(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> segments_tensors = torch.tensor([segments_ids])
# Load bertForTokenClassification
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForTokenClassification', 'bert-base-cased', num_labels=2)
>>> model.eval()
# Predict the token classification logits
>>> with torch.no_grad():
......
from pytorch_pretrained_bert.tokenization_gpt2 import GPT2Tokenizer
from pytorch_pretrained_bert.modeling_gpt2 import (
from pytorch_transformers.tokenization_gpt2 import GPT2Tokenizer
from pytorch_transformers.modeling_gpt2 import (
GPT2Model,
GPT2LMHeadModel,
GPT2DoubleHeadsModel
......@@ -53,7 +53,7 @@ def gpt2Tokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -72,7 +72,7 @@ def gpt2Model(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -83,7 +83,7 @@ def gpt2Model(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2Model
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Model', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Model', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -105,7 +105,7 @@ def gpt2LMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -116,7 +116,7 @@ def gpt2LMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2LMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2LMHeadModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2LMHeadModel', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -144,7 +144,7 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
>>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -157,7 +157,7 @@ def gpt2DoubleHeadsModel(*args, **kwargs):
>>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load gpt2DoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2DoubleHeadsModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'gpt2DoubleHeadsModel', 'gpt2')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_openai import OpenAIGPTTokenizer
from pytorch_pretrained_bert.modeling_openai import (
from pytorch_transformers.tokenization_openai import OpenAIGPTTokenizer
from pytorch_transformers.modeling_openai import (
OpenAIGPTModel,
OpenAIGPTLMHeadModel,
OpenAIGPTDoubleHeadsModel
......@@ -77,7 +77,7 @@ def openAIGPTTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
>>> tokenized_text = tokenizer.tokenize(text)
......@@ -98,7 +98,7 @@ def openAIGPTModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -107,7 +107,7 @@ def openAIGPTModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -127,7 +127,7 @@ def openAIGPTLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -136,7 +136,7 @@ def openAIGPTLMHeadModel(*args, **kwargs):
>>> tokens_tensor = torch.tensor([indexed_tokens])
# Load openAIGPTLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTLMHeadModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTLMHeadModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -162,7 +162,7 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTTokenizer', 'openai-gpt')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTTokenizer', 'openai-gpt')
# Prepare tokenized input
>>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -175,7 +175,7 @@ def openAIGPTDoubleHeadsModel(*args, **kwargs):
>>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# Load openAIGPTDoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'openAIGPTDoubleHeadsModel', 'openai-gpt')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_pretrained_bert.modeling_transfo_xl import (
from pytorch_transformers.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_transformers.modeling_transfo_xl import (
TransfoXLModel,
TransfoXLLMHeadModel
)
......@@ -46,7 +46,7 @@ def transformerXLTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> text = "Who was Jim Henson ?"
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
......@@ -64,7 +64,7 @@ def transformerXLModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -77,7 +77,7 @@ def transformerXLModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -99,7 +99,7 @@ def transformerXLLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -112,7 +112,7 @@ def transformerXLLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model.eval()
# Predict hidden states features for each layer
......
from pytorch_pretrained_bert.tokenization_xlm import XLMTokenizer
from pytorch_pretrained_bert.modeling_xlm import (
from pytorch_transformers.tokenization_xlm import XLMTokenizer
from pytorch_transformers.modeling_xlm import (
XLMConfig,
XLMModel,
XLMWithLMHeadModel,
......@@ -18,7 +18,7 @@ xlm_start_docstring = """
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -77,7 +77,7 @@ def xlmTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlmTokenizer', 'xlm-mlm-en-2048')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -91,7 +91,7 @@ def xlmTokenizer(*args, **kwargs):
def xlmModel(*args, **kwargs):
"""
# Load xlmModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlmModel', 'xlm-mlm-en-2048')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlmModel', 'xlm-mlm-en-2048')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -116,7 +116,7 @@ def xlmLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlm-mlm-en-2048')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -143,7 +143,7 @@ def xlmLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlm-mlm-en-2048')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -156,7 +156,7 @@ def xlmLMHeadModel(*args, **kwargs):
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlm-mlm-en-2048')
# >>> model.eval()
# # Predict sequence classes logits
......
from pytorch_pretrained_bert.tokenization_xlnet import XLNetTokenizer
from pytorch_pretrained_bert.modeling_xlnet import (
from pytorch_transformers.tokenization_xlnet import XLNetTokenizer
from pytorch_transformers.modeling_xlnet import (
XLNetConfig,
XLNetModel,
XLNetLMHeadModel,
......@@ -54,7 +54,7 @@ def xlnetTokenizer(*args, **kwargs):
Example:
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
......@@ -73,7 +73,7 @@ def xlnetModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -84,7 +84,7 @@ def xlnetModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetModel', 'xlnet-large-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetModel', 'xlnet-large-cased')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -107,7 +107,7 @@ def xlnetLMHeadModel(*args, **kwargs):
Example:
# Load the tokenizer
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
>>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
......@@ -118,7 +118,7 @@ def xlnetLMHeadModel(*args, **kwargs):
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load xlnetLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetLMHeadModel', 'xlnet-large-cased')
>>> model.eval()
# Predict hidden states features for each layer
......@@ -145,7 +145,7 @@ def xlnetLMHeadModel(*args, **kwargs):
# Example:
# # Load the tokenizer
# >>> import torch
# >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetTokenizer', 'xlnet-large-cased')
# >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'xlnetTokenizer', 'xlnet-large-cased')
# # Prepare tokenized input
# >>> text1 = "Who was Jim Henson ? Jim Henson was a puppeteer"
......@@ -158,7 +158,7 @@ def xlnetLMHeadModel(*args, **kwargs):
# >>> mc_token_ids = torch.LongTensor([[len(tokenized_text1)-1, len(tokenized_text2)-1]])
# # Load xlnetForSequenceClassification
# >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# >>> model = torch.hub.load('huggingface/pytorch-transformers', 'xlnetForSequenceClassification', 'xlnet-large-cased')
# >>> model.eval()
# # Predict sequence classes logits
......
......@@ -78,7 +78,7 @@
"import importlib.util\n",
"import sys\n",
"import tensorflow as tf\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"\n",
"def del_all_flags(FLAGS):\n",
" flags_dict = FLAGS._flags() \n",
......@@ -3997,9 +3997,9 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling_bert - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_pretrained_bert.modeling_bert - extracting archive file /Users/thomaswolf/.pytorch_pretrained_bert/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_pretrained_bert.modeling_bert - Model config {\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - loading archive file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz from cache at /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba\n",
"11/16/2018 11:03:05 - INFO - pytorch_transformers.modeling_bert - extracting archive file /Users/thomaswolf/.pytorch_transformers/9c41111e2de84547a463fd39217199738d1e3deb72d4fec4399e6e241983c6f0.ae3cef932725ca7a30cdcb93fc6e09150a55e2a130ec7af63975a16c153ae2ba to temp dir /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpaqgsm566\n",
"11/16/2018 11:03:08 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
......
......@@ -342,7 +342,7 @@
"outputs": [],
"source": [
"import extract_features\n",
"import pytorch_pretrained_bert as ppb\n",
"import pytorch_transformers as ppb\n",
"from extract_features import *"
]
},
......@@ -375,8 +375,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling_bert - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_pretrained_bert.modeling_bert - Model config {\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - loading archive file ../../google_models/uncased_L-12_H-768_A-12/\n",
"11/15/2018 16:21:18 - INFO - pytorch_transformers.modeling_bert - Model config {\n",
" \"attention_probs_dropout_prob\": 0.1,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout_prob\": 0.1,\n",
......
__version__ = "0.6.2"
__version__ = "0.7.0"
from .tokenization_bert import BertTokenizer, BasicTokenizer, WordpieceTokenizer
from .tokenization_openai import OpenAIGPTTokenizer
from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
......
......@@ -4,24 +4,24 @@ def main():
if (len(sys.argv) < 4 or len(sys.argv) > 6) or sys.argv[1] not in ["bert", "gpt", "transfo_xl", "gpt2", "xlnet"]:
print(
"Should be used as one of: \n"
">> `pytorch_pretrained_bert bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_pretrained_bert gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_pretrained_bert transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_pretrained_bert gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]` or \n"
">> `pytorch_pretrained_bert xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
">> `pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
">> `pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
">> `pytorch_transformers transfo_xl TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
">> `pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]` or \n"
">> `pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
else:
if sys.argv[1] == "bert":
try:
from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) != 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
print("Should be used as `pytorch_transformers bert TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
else:
PYTORCH_DUMP_OUTPUT = sys.argv.pop()
TF_CONFIG = sys.argv.pop()
......@@ -31,7 +31,7 @@ def main():
from .convert_openai_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
print("Should be used as `pytorch_transformers gpt OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`")
else:
OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -46,13 +46,13 @@ def main():
try:
from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `pytorch_transformers transfo_xl TF_CHECKPOINT/TF_DATASET_FILE PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
if 'ckpt' in sys.argv[2].lower():
TF_CHECKPOINT = sys.argv[2]
......@@ -70,14 +70,14 @@ def main():
try:
from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 4 or len(sys.argv) > 5:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
print("Should be used as `pytorch_transformers gpt2 TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [TF_CONFIG]`")
else:
TF_CHECKPOINT = sys.argv[2]
PYTORCH_DUMP_OUTPUT = sys.argv[3]
......@@ -90,14 +90,14 @@ def main():
try:
from .convert_xlnet_checkpoint_to_pytorch import convert_xlnet_checkpoint_to_pytorch
except ImportError:
print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
print("pytorch_transformers can only be used from the commandline to convert TensorFlow models in PyTorch, "
"In that case, it requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
if len(sys.argv) < 5 or len(sys.argv) > 6:
# pylint: disable=line-too-long
print("Should be used as `pytorch_pretrained_bert xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
print("Should be used as `pytorch_transformers xlnet TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT [FINETUNING_TASK_NAME]`")
else:
TF_CHECKPOINT = sys.argv[2]
TF_CONFIG = sys.argv[3]
......
......@@ -21,7 +21,7 @@ from io import open
import torch
from pytorch_pretrained_bert.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
from pytorch_transformers.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
GPT2Config,
GPT2Model,
load_tf_weights_in_gpt2)
......
......@@ -21,7 +21,7 @@ from io import open
import torch
from pytorch_pretrained_bert.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
from pytorch_transformers.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
OpenAIGPTConfig,
OpenAIGPTModel,
load_tf_weights_in_openai_gpt)
......
......@@ -25,7 +25,7 @@ import tensorflow as tf
import torch
import numpy as np
from pytorch_pretrained_bert.modeling_bert import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from pytorch_transformers.modeling_bert import BertConfig, BertForPreTraining, load_tf_weights_in_bert
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
......
......@@ -23,13 +23,13 @@ from io import open
import torch
import pytorch_pretrained_bert.tokenization_transfo_xl as data_utils
from pytorch_pretrained_bert.modeling_transfo_xl import (CONFIG_NAME,
import pytorch_transformers.tokenization_transfo_xl as data_utils
from pytorch_transformers.modeling_transfo_xl import (CONFIG_NAME,
WEIGHTS_NAME,
TransfoXLConfig,
TransfoXLLMHeadModel,
load_tf_weights_in_transfo_xl)
from pytorch_pretrained_bert.tokenization_transfo_xl import (CORPUS_NAME,
from pytorch_transformers.tokenization_transfo_xl import (CORPUS_NAME,
VOCAB_NAME)
if sys.version_info[0] == 2:
......
......@@ -23,8 +23,8 @@ from io import open
import torch
import numpy
from pytorch_pretrained_bert.modeling_xlm import (CONFIG_NAME, WEIGHTS_NAME, XLMConfig, XLMModel)
from pytorch_pretrained_bert.tokenization_xlm import MERGES_NAME, VOCAB_NAME
from pytorch_transformers.modeling_xlm import (CONFIG_NAME, WEIGHTS_NAME, XLMConfig, XLMModel)
from pytorch_transformers.tokenization_xlm import MERGES_NAME, VOCAB_NAME
def convert_xlm_checkpoint_to_pytorch(xlm_checkpoint_path, pytorch_dump_folder_path):
......
......@@ -22,7 +22,7 @@ import os
import argparse
import torch
from pytorch_pretrained_bert.modeling_xlnet import (CONFIG_NAME, WEIGHTS_NAME,
from pytorch_transformers.modeling_xlnet import (CONFIG_NAME, WEIGHTS_NAME,
XLNetConfig,
XLNetLMHeadModel, XLNetForQuestionAnswering,
XLNetForSequenceClassification,
......
......@@ -29,7 +29,7 @@ except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv('TORCH_HOME', os.path.join(
os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')))
default_cache_path = os.path.join(torch_cache_home, 'pytorch_pretrained_bert')
default_cache_path = os.path.join(torch_cache_home, 'pytorch_transformers')
try:
from urllib.parse import urlparse
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment