Unverified Commit 0b933584 authored by Daniel Stancl's avatar Daniel Stancl Committed by GitHub
Browse files

Fix usage of head masks by TF encoder-decoder models' `generate()` function (#11775)

* Fix Bart

* Fix Blenderbot{,_small}

* Fix LED

* Fix Marian

* Fix MBart

* Fix Pegasus

* Fix T5

* Add test for generation with head_mask

* Add a common TF test

* Override a test for the LED model as head masking is not yet properly implemented

* Remove all head_masks from input preparation for LED

* Drop masking for T5 as it needs a bit of refactor
parent 0b0a5984
...@@ -1452,6 +1452,8 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode ...@@ -1452,6 +1452,8 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1487,6 +1489,8 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode ...@@ -1487,6 +1489,8 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageMode
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1476,6 +1476,8 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal ...@@ -1476,6 +1476,8 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1511,6 +1513,8 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal ...@@ -1511,6 +1513,8 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausal
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1451,6 +1451,8 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel ...@@ -1451,6 +1451,8 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1486,6 +1488,8 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel ...@@ -1486,6 +1488,8 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -2477,7 +2477,15 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): ...@@ -2477,7 +2477,15 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
encoder_global_attentions=enc_g_attns, encoder_global_attentions=enc_g_attns,
) )
def prepare_inputs_for_generation(self, decoder_input_ids, past, attention_mask, use_cache, **kwargs) -> Dict: def prepare_inputs_for_generation(
self,
decoder_input_ids,
past,
attention_mask,
head_mask=None,
use_cache=None,
**kwargs,
) -> Dict:
assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}" assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}"
if len(past) == 1: if len(past) == 1:
assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}" assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}"
...@@ -2510,6 +2518,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel): ...@@ -2510,6 +2518,7 @@ class TFLEDForConditionalGeneration(TFLEDPreTrainedModel):
"past_key_values": past_key_values, "past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1480,6 +1480,8 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -1480,6 +1480,8 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1515,6 +1517,8 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss): ...@@ -1515,6 +1517,8 @@ class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1464,6 +1464,8 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo ...@@ -1464,6 +1464,8 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1499,6 +1501,8 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo ...@@ -1499,6 +1501,8 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageMo
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1489,6 +1489,8 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua ...@@ -1489,6 +1489,8 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
past, past,
attention_mask, attention_mask,
head_mask=None, head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None, use_cache=None,
**kwargs, **kwargs,
) -> Dict: ) -> Dict:
...@@ -1524,6 +1526,8 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua ...@@ -1524,6 +1526,8 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLangua
"decoder_input_ids": decoder_input_ids, "decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask, "attention_mask": attention_mask,
"head_mask": head_mask, "head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging) "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
} }
......
...@@ -1464,7 +1464,14 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling ...@@ -1464,7 +1464,14 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
encoder_attentions=enc_attns, encoder_attentions=enc_attns,
) )
def prepare_inputs_for_generation(self, inputs, past, attention_mask, use_cache, **kwargs): def prepare_inputs_for_generation(
self,
inputs,
past,
attention_mask,
use_cache=None,
**kwargs,
):
assert past is not None, "past has to be defined for encoder_outputs" assert past is not None, "past has to be defined for encoder_outputs"
# first step # first step
......
...@@ -1195,6 +1195,40 @@ class TFModelTesterMixin: ...@@ -1195,6 +1195,40 @@ class TFModelTesterMixin:
self.assertEqual(loss.shape, [loss_size]) self.assertEqual(loss.shape, [loss_size])
def test_generate_with_headmasking(self):
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_generative_model_classes:
model = model_class(config)
# We want to test only encoder-decoder models
if not config.is_encoder_decoder:
continue
head_masking = {
"head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)),
"decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
"cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)),
}
signature = inspect.signature(model.call)
if set(head_masking.keys()) < set([*signature.parameters.keys()]):
continue
for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
out = model.generate(
inputs_dict["input_ids"],
num_beams=1,
max_length=inputs_dict["input_ids"] + 5,
output_attentions=True,
return_dict_in_generate=True,
**{name: mask},
)
# We check the state of decoder_attentions and cross_attentions just from the last step
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0)
def _generate_random_bad_tokens(self, num_bad_tokens, model): def _generate_random_bad_tokens(self, num_bad_tokens, model):
# special tokens cannot be bad tokens # special tokens cannot be bad tokens
special_tokens = [] special_tokens = []
......
...@@ -370,6 +370,10 @@ class TFLEDModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -370,6 +370,10 @@ class TFLEDModelTest(TFModelTesterMixin, unittest.TestCase):
# This test is too long (>30sec) and makes fail the CI # This test is too long (>30sec) and makes fail the CI
pass pass
def test_generate_with_headmasking(self):
# TODO: Head-masking not yet implement
pass
def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
"""If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
......
...@@ -310,6 +310,10 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase): ...@@ -310,6 +310,10 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
model = TFT5Model.from_pretrained("t5-small") model = TFT5Model.from_pretrained("t5-small")
self.assertIsNotNone(model) self.assertIsNotNone(model)
def test_generate_with_headmasking(self):
# TODO: Fix head-masking according to PyTorch T5 model
pass
class TFT5EncoderOnlyModelTester: class TFT5EncoderOnlyModelTester:
def __init__( def __init__(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment