"tests/bert/test_modeling_tf_bert.py" did not exist on "51d9c569fadcfc1b3949a05fa6a2d3de78dd0a0f"
Unverified Commit 098b0026 authored by Patrick von Platen's avatar Patrick von Platen Committed by GitHub
Browse files

[Doctests] Correct task summary (#16644)

parent 6ef7186b
......@@ -1090,16 +1090,15 @@ The following examples demonstrate how to use a [`pipeline`] and a model and tok
>>> from transformers import pipeline
>>> vision_classifier = pipeline(task="image-classification")
>>> vision_classifier(
>>> result = vision_classifier(
... images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
[{'label': 'lynx, catamount', 'score': 0.4403027892112732},
{'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
'score': 0.03433405980467796},
{'label': 'snow leopard, ounce, Panthera uncia',
'score': 0.032148055732250214},
{'label': 'Egyptian cat', 'score': 0.02353910356760025},
{'label': 'tiger cat', 'score': 0.023034192621707916}]
>>> print("\n".join([f"Class {d['label']} with score {round(d['score'], 4)}" for d in result]))
Class lynx, catamount with score 0.4335
Class cougar, puma, catamount, mountain lion, painter, panther, Felis concolor with score 0.0348
Class snow leopard, ounce, Panthera uncia with score 0.0324
Class Egyptian cat with score 0.0239
Class tiger cat with score 0.0229
```
The general process for using a model and feature extractor for image classification is:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment