Unverified Commit 08d609bf authored by Tomohiro Endo's avatar Tomohiro Endo Committed by GitHub
Browse files

Add tokenizers class mismatch detection between `cls` and checkpoint (#12619)



* Detect mismatch by analyzing config

* Fix comment

* Fix import

* Update src/transformers/tokenization_utils_base.py
Co-authored-by: default avatarSaulLu <55560583+SaulLu@users.noreply.github.com>

* Revise based on reviews

* remove kwargs

* Fix exception

* Fix handling exception again

* Disable mismatch test in PreTrainedTokenizerFast
Co-authored-by: default avatarSaulLu <55560583+SaulLu@users.noreply.github.com>
parent b4b562d8
......@@ -132,7 +132,7 @@ class BertJapaneseTokenizer(BertTokenizer):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
"model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
......
......@@ -1749,13 +1749,58 @@ class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
if tokenizer_config_file is not None:
with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle:
init_kwargs = json.load(tokenizer_config_handle)
# First attempt. We get tokenizer_class from tokenizer_config to check mismatch between tokenizers.
config_tokenizer_class = init_kwargs.get("tokenizer_class")
init_kwargs.pop("tokenizer_class", None)
saved_init_inputs = init_kwargs.pop("init_inputs", ())
if not init_inputs:
init_inputs = saved_init_inputs
else:
config_tokenizer_class = None
init_kwargs = init_configuration
if config_tokenizer_class is None:
from .models.auto.configuration_auto import AutoConfig
# Second attempt. If we have not yet found tokenizer_class, let's try to use the config.
try:
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
config_tokenizer_class = config.tokenizer_class
except (OSError, ValueError, KeyError):
# skip if an error occured.
config = None
if config_tokenizer_class is None:
# Third attempt. If we have not yet found the original type of the tokenizer,
# we are loading we see if we can infer it from the type of the configuration file
from .models.auto.configuration_auto import CONFIG_MAPPING
from .models.auto.tokenization_auto import TOKENIZER_MAPPING
if hasattr(config, "model_type"):
config_class = CONFIG_MAPPING.get(config.model_type)
else:
# Fallback: use pattern matching on the string.
config_class = None
for pattern, config_class_tmp in CONFIG_MAPPING.items():
if pattern in str(pretrained_model_name_or_path):
config_class = config_class_tmp
break
if config_class in TOKENIZER_MAPPING.keys():
config_tokenizer_class, config_tokenizer_class_fast = TOKENIZER_MAPPING[config_class]
if config_tokenizer_class is not None:
config_tokenizer_class = config_tokenizer_class.__name__
else:
config_tokenizer_class = config_tokenizer_class_fast.__name__
if config_tokenizer_class is not None:
if cls.__name__.replace("Fast", "") != config_tokenizer_class.replace("Fast", ""):
logger.warning(
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. "
"It may result in unexpected tokenization. \n"
f"The tokenizer class you load from this checkpoint is '{config_tokenizer_class}'. \n"
f"The class this function is called from is '{cls.__name__}'."
)
# Update with newly provided kwargs
init_kwargs.update(kwargs)
......
......@@ -22,6 +22,7 @@ from transformers import AutoTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
BertTokenizer,
CharacterTokenizer,
MecabTokenizer,
WordpieceTokenizer,
......@@ -278,3 +279,23 @@ class AutoTokenizerCustomTest(unittest.TestCase):
EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese"
tokenizer = AutoTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID)
self.assertIsInstance(tokenizer, BertJapaneseTokenizer)
class BertTokenizerMismatchTest(unittest.TestCase):
def test_tokenizer_mismatch_warning(self):
EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese"
with self.assertLogs("transformers", level="WARNING") as cm:
BertTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
)
)
EXAMPLE_BERT_ID = "bert-base-cased"
with self.assertLogs("transformers", level="WARNING") as cm:
BertJapaneseTokenizer.from_pretrained(EXAMPLE_BERT_ID)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
)
)
......@@ -29,7 +29,10 @@ from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AlbertTokenizerFast,
BertTokenizer,
BertTokenizerFast,
PreTrainedTokenizer,
PreTrainedTokenizerBase,
PreTrainedTokenizerFast,
......@@ -3292,6 +3295,41 @@ class TokenizerTesterMixin:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
def test_tokenizer_mismatch_warning(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
with self.assertLogs("transformers", level="WARNING") as cm:
try:
if self.tokenizer_class == BertTokenizer:
AlbertTokenizer.from_pretrained(pretrained_name)
else:
BertTokenizer.from_pretrained(pretrained_name)
except (TypeError, AttributeError):
# Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
# here we just check that the warning has been logged before the error is raised
pass
finally:
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
)
)
try:
if self.rust_tokenizer_class == BertTokenizerFast:
AlbertTokenizerFast.from_pretrained(pretrained_name)
else:
BertTokenizerFast.from_pretrained(pretrained_name)
except (TypeError, AttributeError):
# Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
# here we just check that the warning has been logged before the error is raised
pass
finally:
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
)
)
@is_staging_test
class TokenizerPushToHubTester(unittest.TestCase):
......
......@@ -44,6 +44,11 @@ class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0])
tokenizer.save_pretrained(self.tmpdirname)
def test_tokenizer_mismatch_warning(self):
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
# model
pass
def test_pretrained_model_lists(self):
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
# model
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment