"src/vscode:/vscode.git/clone" did not exist on "3f84bc67084533b70e9a5e4291c8978760547fd8"
Unverified Commit 07c54413 authored by Shehan Munasinghe's avatar Shehan Munasinghe Committed by GitHub
Browse files

Add MobileViTv2 (#22820)



* generated code from add-new-model-like

* Add code for modeling, config, and weight conversion

* add tests for image-classification, update modeling and config

* add code, tests for semantic-segmentation

* make style, make quality, make fix-copies

* make fix-copies

* Update modeling_mobilevitv2.py

fix bugs

* Update _toctree.yml

* update modeling, config

fix bugs

* Edit docs - fix bug MobileViTv2v2 -> MobileViTv2

* Update mobilevitv2.mdx

* update docstrings

* Update configuration_mobilevitv2.py

make style

* Update convert_mlcvnets_to_pytorch.py

remove unused options

* Update convert_mlcvnets_to_pytorch.py

make style

* Add suggestions from code review
Co-Authored-By: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style, make quality

* Add suggestions from code review
Co-Authored-By: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review

Remove MobileViTv2ImageProcessor
Co-Authored-By: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* make style

* Add suggestions from code review

Rename MobileViTv2 -> MobileViTV2
Co-Authored-By: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Add suggestions from code review
Co-Authored-By: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update modeling_mobilevitv2.py

make style

* Update serialization.mdx

* Update modeling_mobilevitv2.py

---------
Co-authored-by: default avataramyeroberts <22614925+amyeroberts@users.noreply.github.com>
parent 5dfd407b
# coding=utf-8
# Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
""" PyTorch MobileViTV2 model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mobilevitv2 import MobileViTV2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MobileViTV2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"apple/mobilevitv2-1.0-imagenet1k-256"
# See all MobileViTV2 models at https://huggingface.co/models?filter=mobilevitv2
]
# Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
"""
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
original TensorFlow repo. It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float:
return max(min_val, min(max_val, value))
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2
class MobileViTV2ConvLayer(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
) -> None:
super().__init__()
padding = int((kernel_size - 1) / 2) * dilation
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2
class MobileViTV2InvertedResidual(nn.Module):
"""
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
"""
def __init__(
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1
) -> None:
super().__init__()
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
if stride not in [1, 2]:
raise ValueError(f"Invalid stride {stride}.")
self.use_residual = (stride == 1) and (in_channels == out_channels)
self.expand_1x1 = MobileViTV2ConvLayer(
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileViTV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=stride,
groups=expanded_channels,
dilation=dilation,
)
self.reduce_1x1 = MobileViTV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
residual = features
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return residual + features if self.use_residual else features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2
class MobileViTV2MobileNetLayer(nn.Module):
def __init__(
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
) -> None:
super().__init__()
self.layer = nn.ModuleList()
for i in range(num_stages):
layer = MobileViTV2InvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if i == 0 else 1,
)
self.layer.append(layer)
in_channels = out_channels
def forward(self, features: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
features = layer_module(features)
return features
class MobileViTV2LinearSelfAttention(nn.Module):
"""
This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper:
https://arxiv.org/abs/2206.02680
Args:
config (`MobileVitv2Config`):
Model configuration object
embed_dim (`int`):
`input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)`
"""
def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None:
super().__init__()
self.qkv_proj = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=1 + (2 * embed_dim),
bias=True,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.attn_dropout = nn.Dropout(p=config.attn_dropout)
self.out_proj = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=embed_dim,
bias=True,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.embed_dim = embed_dim
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches)
qkv = self.qkv_proj(hidden_states)
# Project hidden_states into query, key and value
# Query --> [batch_size, 1, num_pixels_in_patch, num_patches]
# value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1)
# apply softmax along num_patches dimension
context_scores = torch.nn.functional.softmax(query, dim=-1)
context_scores = self.attn_dropout(context_scores)
# Compute context vector
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
context_vector = key * context_scores
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1]
context_vector = torch.sum(context_vector, dim=-1, keepdim=True)
# combine context vector with values
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
out = torch.nn.functional.relu(value) * context_vector.expand_as(value)
out = self.out_proj(out)
return out
class MobileViTV2FFN(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
embed_dim: int,
ffn_latent_dim: int,
ffn_dropout: float = 0.0,
) -> None:
super().__init__()
self.conv1 = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=ffn_latent_dim,
kernel_size=1,
stride=1,
bias=True,
use_normalization=False,
use_activation=True,
)
self.dropout1 = nn.Dropout(ffn_dropout)
self.conv2 = MobileViTV2ConvLayer(
config=config,
in_channels=ffn_latent_dim,
out_channels=embed_dim,
kernel_size=1,
stride=1,
bias=True,
use_normalization=False,
use_activation=False,
)
self.dropout2 = nn.Dropout(ffn_dropout)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv1(hidden_states)
hidden_states = self.dropout1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.dropout2(hidden_states)
return hidden_states
class MobileViTV2TransformerLayer(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
embed_dim: int,
ffn_latent_dim: int,
dropout: float = 0.0,
) -> None:
super().__init__()
self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
self.attention = MobileViTV2LinearSelfAttention(config, embed_dim)
self.dropout1 = nn.Dropout(p=dropout)
self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
layernorm_1_out = self.layernorm_before(hidden_states)
attention_output = self.attention(layernorm_1_out)
hidden_states = attention_output + hidden_states
layer_output = self.layernorm_after(hidden_states)
layer_output = self.ffn(layer_output)
layer_output = layer_output + hidden_states
return layer_output
class MobileViTV2Transformer(nn.Module):
def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None:
super().__init__()
ffn_multiplier = config.ffn_multiplier
ffn_dims = [ffn_multiplier * d_model] * n_layers
# ensure that dims are multiple of 16
ffn_dims = [int((d // 16) * 16) for d in ffn_dims]
self.layer = nn.ModuleList()
for block_idx in range(n_layers):
transformer_layer = MobileViTV2TransformerLayer(
config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx]
)
self.layer.append(transformer_layer)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
hidden_states = layer_module(hidden_states)
return hidden_states
class MobileViTV2Layer(nn.Module):
"""
MobileViTV2 layer: https://arxiv.org/abs/2206.02680
"""
def __init__(
self,
config: MobileViTV2Config,
in_channels: int,
out_channels: int,
attn_unit_dim: int,
n_attn_blocks: int = 2,
dilation: int = 1,
stride: int = 2,
) -> None:
super().__init__()
self.patch_width = config.patch_size
self.patch_height = config.patch_size
cnn_out_dim = attn_unit_dim
if stride == 2:
self.downsampling_layer = MobileViTV2InvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if dilation == 1 else 1,
dilation=dilation // 2 if dilation > 1 else 1,
)
in_channels = out_channels
else:
self.downsampling_layer = None
# Local representations
self.conv_kxk = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=in_channels,
kernel_size=config.conv_kernel_size,
groups=in_channels,
)
self.conv_1x1 = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=cnn_out_dim,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
# Global representations
self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks)
# self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps)
self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps)
# Fusion
self.conv_projection = MobileViTV2ConvLayer(
config,
in_channels=cnn_out_dim,
out_channels=in_channels,
kernel_size=1,
use_normalization=True,
use_activation=False,
)
def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]:
batch_size, in_channels, img_height, img_width = feature_map.shape
patches = nn.functional.unfold(
feature_map,
kernel_size=(self.patch_height, self.patch_width),
stride=(self.patch_height, self.patch_width),
)
patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1)
return patches, (img_height, img_width)
def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor:
batch_size, in_dim, patch_size, n_patches = patches.shape
patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)
feature_map = nn.functional.fold(
patches,
output_size=output_size,
kernel_size=(self.patch_height, self.patch_width),
stride=(self.patch_height, self.patch_width),
)
return feature_map
def forward(self, features: torch.Tensor) -> torch.Tensor:
# reduce spatial dimensions if needed
if self.downsampling_layer:
features = self.downsampling_layer(features)
# local representation
features = self.conv_kxk(features)
features = self.conv_1x1(features)
# convert feature map to patches
patches, output_size = self.unfolding(features)
# learn global representations
patches = self.transformer(patches)
patches = self.layernorm(patches)
# convert patches back to feature maps
# [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width]
features = self.folding(patches, output_size)
features = self.conv_projection(features)
return features
class MobileViTV2Encoder(nn.Module):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList()
self.gradient_checkpointing = False
# segmentation architectures like DeepLab and PSPNet modify the strides
# of the classification backbones
dilate_layer_4 = dilate_layer_5 = False
if config.output_stride == 8:
dilate_layer_4 = True
dilate_layer_5 = True
elif config.output_stride == 16:
dilate_layer_5 = True
dilation = 1
layer_0_dim = make_divisible(
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
)
layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16)
layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8)
layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8)
layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8)
layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8)
layer_1 = MobileViTV2MobileNetLayer(
config,
in_channels=layer_0_dim,
out_channels=layer_1_dim,
stride=1,
num_stages=1,
)
self.layer.append(layer_1)
layer_2 = MobileViTV2MobileNetLayer(
config,
in_channels=layer_1_dim,
out_channels=layer_2_dim,
stride=2,
num_stages=2,
)
self.layer.append(layer_2)
layer_3 = MobileViTV2Layer(
config,
in_channels=layer_2_dim,
out_channels=layer_3_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[0],
)
self.layer.append(layer_3)
if dilate_layer_4:
dilation *= 2
layer_4 = MobileViTV2Layer(
config,
in_channels=layer_3_dim,
out_channels=layer_4_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[1],
dilation=dilation,
)
self.layer.append(layer_4)
if dilate_layer_5:
dilation *= 2
layer_5 = MobileViTV2Layer(
config,
in_channels=layer_4_dim,
out_channels=layer_5_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[2],
dilation=dilation,
)
self.layer.append(layer_5)
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
)
else:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2
class MobileViTV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileViTV2Config
base_model_prefix = "mobilevitv2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, MobileViTV2Encoder):
module.gradient_checkpointing = value
MOBILEVITV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILEVITV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileViTImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.",
MOBILEVITV2_START_DOCSTRING,
)
class MobileViTV2Model(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config, expand_output: bool = True):
super().__init__(config)
self.config = config
self.expand_output = expand_output
layer_0_dim = make_divisible(
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
)
self.conv_stem = MobileViTV2ConvLayer(
config,
in_channels=config.num_channels,
out_channels=layer_0_dim,
kernel_size=3,
stride=2,
use_normalization=True,
use_activation=True,
)
self.encoder = MobileViTV2Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer_index, heads in heads_to_prune.items():
mobilevitv2_layer = self.encoder.layer[layer_index]
if isinstance(mobilevitv2_layer, MobileViTV2Layer):
for transformer_layer in mobilevitv2_layer.transformer.layer:
transformer_layer.attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.conv_stem(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.expand_output:
last_hidden_state = encoder_outputs[0]
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
else:
last_hidden_state = encoder_outputs[0]
pooled_output = None
if not return_dict:
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
return output + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
MOBILEVITV2_START_DOCSTRING,
)
class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevitv2 = MobileViTV2Model(config)
out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
# Classifier head
self.classifier = (
nn.Linear(in_features=out_channels, out_features=config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2
class MobileViTV2ASPPPooling(nn.Module):
def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None:
super().__init__()
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.conv_1x1 = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
spatial_size = features.shape[-2:]
features = self.global_pool(features)
features = self.conv_1x1(features)
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
return features
class MobileViTV2ASPP(nn.Module):
"""
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
in_channels = encoder_out_channels
out_channels = config.aspp_out_channels
if len(config.atrous_rates) != 3:
raise ValueError("Expected 3 values for atrous_rates")
self.convs = nn.ModuleList()
in_projection = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
use_activation="relu",
)
self.convs.append(in_projection)
self.convs.extend(
[
MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
dilation=rate,
use_activation="relu",
)
for rate in config.atrous_rates
]
)
pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels)
self.convs.append(pool_layer)
self.project = MobileViTV2ConvLayer(
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
)
self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
def forward(self, features: torch.Tensor) -> torch.Tensor:
pyramid = []
for conv in self.convs:
pyramid.append(conv(features))
pyramid = torch.cat(pyramid, dim=1)
pooled_features = self.project(pyramid)
pooled_features = self.dropout(pooled_features)
return pooled_features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2
class MobileViTV2DeepLabV3(nn.Module):
"""
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
self.aspp = MobileViTV2ASPP(config)
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
self.classifier = MobileViTV2ConvLayer(
config,
in_channels=config.aspp_out_channels,
out_channels=config.num_labels,
kernel_size=1,
use_normalization=False,
use_activation=False,
bias=True,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
features = self.aspp(hidden_states[-1])
features = self.dropout(features)
features = self.classifier(features)
return features
@add_start_docstrings(
"""
MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC.
""",
MOBILEVITV2_START_DOCSTRING,
)
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation with MOBILEVIT->MOBILEVITV2,MobileViT->MobileViTV2,mobilevit->mobilevitv2
class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevitv2 = MobileViTV2Model(config, expand_output=False)
self.segmentation_head = MobileViTV2DeepLabV3(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevitv2-small")
>>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevitv2-small")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevitv2(
pixel_values,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.segmentation_head(encoder_hidden_states)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
......@@ -4743,6 +4743,37 @@ class MobileViTPreTrainedModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MobileViTV2ForImageClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2ForSemanticSegmentation(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2Model(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MobileViTV2PreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MobileViTV2 model. """
import inspect
import unittest
from transformers import MobileViTV2Config
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model
from transformers.models.mobilevitv2.modeling_mobilevitv2 import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class MobileViTV2ConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "width_multiplier"))
class MobileViTV2ModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
patch_size=2,
num_channels=3,
hidden_act="swish",
conv_kernel_size=3,
output_stride=32,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
width_multiplier=0.25,
ffn_dropout=0.0,
attn_dropout=0.0,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = make_divisible(512 * width_multiplier, divisor=8)
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
self.width_multiplier = width_multiplier
self.ffn_dropout_prob = ffn_dropout
self.attn_dropout_prob = attn_dropout
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTV2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
width_multiplier=self.width_multiplier,
ffn_dropout=self.ffn_dropout_prob,
attn_dropout=self.attn_dropout_prob,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = MobileViTV2Model(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTV2ForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = MobileViTV2ForSemanticSegmentation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape,
(
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MobileViTV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViTV2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(MobileViTV2Model, MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": MobileViTV2Model,
"image-classification": MobileViTV2ForImageClassification,
"image-segmentation": MobileViTV2ForSemanticSegmentation,
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = MobileViTV2ModelTester(self)
self.config_tester = MobileViTV2ConfigTester(self, config_class=MobileViTV2Config, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileViTV2 does not output attentions")
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = MobileViTV2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class MobileViTV2ModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-imagenet1k-256")
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = MobileViTV2ForImageClassification.from_pretrained("shehan97/mobilevitv2-1.0-imagenet1k-256").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
def test_inference_semantic_segmentation(self):
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = torch.tensor(
[
[[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]],
[[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]],
[[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]],
],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3, :3], expected_slice, atol=1e-4))
@slow
def test_post_processing_semantic_segmentation(self):
model = MobileViTV2ForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
model = model.to(torch_device)
image_processor = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
outputs.logits = outputs.logits.detach().cpu()
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(50, 60)])
expected_shape = torch.Size((50, 60))
self.assertEqual(segmentation[0].shape, expected_shape)
segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
expected_shape = torch.Size((32, 32))
self.assertEqual(segmentation[0].shape, expected_shape)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment