Commit 0558c9cb authored by thomwolf's avatar thomwolf
Browse files

Merge branch 'master' into t5

parents 608a8f5b e57d00ee
# coding=utf-8
import datetime
import os
import math
import glob
import re
import tensorflow as tf
import collections
import numpy as np
from seqeval import metrics
import _pickle as pickle
from absl import logging
from transformers import TF2_WEIGHTS_NAME, BertConfig, BertTokenizer, TFBertForTokenClassification
from transformers import RobertaConfig, RobertaTokenizer, TFRobertaForTokenClassification
from transformers import DistilBertConfig, DistilBertTokenizer, TFDistilBertForTokenClassification
from transformers import create_optimizer, GradientAccumulator
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file
from fastprogress import master_bar, progress_bar
from absl import flags
from absl import app
ALL_MODELS = sum(
(tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig)),
())
MODEL_CLASSES = {
"bert": (BertConfig, TFBertForTokenClassification, BertTokenizer),
"roberta": (RobertaConfig, TFRobertaForTokenClassification, RobertaTokenizer),
"distilbert": (DistilBertConfig, TFDistilBertForTokenClassification, DistilBertTokenizer)
}
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .conll files (or other data files) "
"for the task.")
flags.DEFINE_string(
"model_type", None,
"Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
flags.DEFINE_string(
"model_name_or_path", None,
"Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
flags.DEFINE_string(
"labels", "",
"Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.")
flags.DEFINE_string(
"config_name", "",
"Pretrained config name or path if not the same as model_name")
flags.DEFINE_string(
"tokenizer_name", "",
"Pretrained tokenizer name or path if not the same as model_name")
flags.DEFINE_string(
"cache_dir", "",
"Where do you want to store the pre-trained models downloaded from s3")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sentence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter "
"will be padded.")
flags.DEFINE_string(
"tpu", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Total number of TPU cores to use.")
flags.DEFINE_boolean(
"do_train", False,
"Whether to run training.")
flags.DEFINE_boolean(
"do_eval", False,
"Whether to run eval on the dev set.")
flags.DEFINE_boolean(
"do_predict", False,
"Whether to run predictions on the test set.")
flags.DEFINE_boolean(
"evaluate_during_training", False,
"Whether to run evaluation during training at each logging step.")
flags.DEFINE_boolean(
"do_lower_case", False,
"Set this flag if you are using an uncased model.")
flags.DEFINE_integer(
"per_device_train_batch_size", 8,
"Batch size per GPU/CPU/TPU for training.")
flags.DEFINE_integer(
"per_device_eval_batch_size", 8,
"Batch size per GPU/CPU/TPU for evaluation.")
flags.DEFINE_integer(
"gradient_accumulation_steps", 1,
"Number of updates steps to accumulate before performing a backward/update pass.")
flags.DEFINE_float(
"learning_rate", 5e-5,
"The initial learning rate for Adam.")
flags.DEFINE_float(
"weight_decay", 0.0,
"Weight decay if we apply some.")
flags.DEFINE_float(
"adam_epsilon", 1e-8,
"Epsilon for Adam optimizer.")
flags.DEFINE_float(
"max_grad_norm", 1.0,
"Max gradient norm.")
flags.DEFINE_integer(
"num_train_epochs", 3,
"Total number of training epochs to perform.")
flags.DEFINE_integer(
"max_steps", -1,
"If > 0: set total number of training steps to perform. Override num_train_epochs.")
flags.DEFINE_integer(
"warmup_steps", 0,
"Linear warmup over warmup_steps.")
flags.DEFINE_integer(
"logging_steps", 50,
"Log every X updates steps.")
flags.DEFINE_integer(
"save_steps", 50,
"Save checkpoint every X updates steps.")
flags.DEFINE_boolean(
"eval_all_checkpoints", False,
"Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
flags.DEFINE_boolean(
"no_cuda", False,
"Avoid using CUDA when available")
flags.DEFINE_boolean(
"overwrite_output_dir", False,
"Overwrite the content of the output directory")
flags.DEFINE_boolean(
"overwrite_cache", False,
"Overwrite the cached training and evaluation sets")
flags.DEFINE_integer(
"seed", 42,
"random seed for initialization")
flags.DEFINE_boolean(
"fp16", False,
"Whether to use 16-bit (mixed) precision instead of 32-bit")
flags.DEFINE_string(
"gpus", "0",
"Comma separated list of gpus devices. If only one, switch to single "
"gpu strategy, if None takes all the gpus available.")
def train(args, strategy, train_dataset, tokenizer, model, num_train_examples, labels, train_batch_size, pad_token_label_id):
if args['max_steps'] > 0:
num_train_steps = args['max_steps'] * args['gradient_accumulation_steps']
args['num_train_epochs'] = 1
else:
num_train_steps = math.ceil(num_train_examples / train_batch_size) // args['gradient_accumulation_steps'] * args['num_train_epochs']
writer = tf.summary.create_file_writer("/tmp/mylogs")
with strategy.scope():
loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
optimizer = create_optimizer(args['learning_rate'], num_train_steps, args['warmup_steps'])
if args['fp16']:
optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, 'dynamic')
loss_metric = tf.keras.metrics.Mean(name='loss', dtype=tf.float32)
gradient_accumulator = GradientAccumulator()
logging.info("***** Running training *****")
logging.info(" Num examples = %d", num_train_examples)
logging.info(" Num Epochs = %d", args['num_train_epochs'])
logging.info(" Instantaneous batch size per device = %d", args['per_device_train_batch_size'])
logging.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
train_batch_size * args['gradient_accumulation_steps'])
logging.info(" Gradient Accumulation steps = %d", args['gradient_accumulation_steps'])
logging.info(" Total training steps = %d", num_train_steps)
model.summary()
@tf.function
def apply_gradients():
grads_and_vars = []
for gradient, variable in zip(gradient_accumulator.gradients, model.trainable_variables):
if gradient is not None:
scaled_gradient = gradient / (args['n_device'] * args['gradient_accumulation_steps'])
grads_and_vars.append((scaled_gradient, variable))
else:
grads_and_vars.append((gradient, variable))
optimizer.apply_gradients(grads_and_vars, args['max_grad_norm'])
gradient_accumulator.reset()
@tf.function
def train_step(train_features, train_labels):
def step_fn(train_features, train_labels):
inputs = {'attention_mask': train_features['input_mask'], 'training': True}
if args['model_type'] != "distilbert":
inputs["token_type_ids"] = train_features['segment_ids'] if args['model_type'] in ["bert", "xlnet"] else None
with tf.GradientTape() as tape:
logits = model(train_features['input_ids'], **inputs)[0]
logits = tf.reshape(logits, (-1, len(labels) + 1))
active_loss = tf.reshape(train_features['input_mask'], (-1,))
active_logits = tf.boolean_mask(logits, active_loss)
train_labels = tf.reshape(train_labels, (-1,))
active_labels = tf.boolean_mask(train_labels, active_loss)
cross_entropy = loss_fct(active_labels, active_logits)
loss = tf.reduce_sum(cross_entropy) * (1.0 / train_batch_size)
grads = tape.gradient(loss, model.trainable_variables)
gradient_accumulator(grads)
return cross_entropy
per_example_losses = strategy.experimental_run_v2(step_fn, args=(train_features, train_labels))
mean_loss = strategy.reduce(tf.distribute.ReduceOp.MEAN, per_example_losses, axis=0)
return mean_loss
current_time = datetime.datetime.now()
train_iterator = master_bar(range(args['num_train_epochs']))
global_step = 0
logging_loss = 0.0
for epoch in train_iterator:
epoch_iterator = progress_bar(train_dataset, total=num_train_steps, parent=train_iterator, display=args['n_device'] > 1)
step = 1
with strategy.scope():
for train_features, train_labels in epoch_iterator:
loss = train_step(train_features, train_labels)
if step % args['gradient_accumulation_steps'] == 0:
strategy.experimental_run_v2(apply_gradients)
loss_metric(loss)
global_step += 1
if args['logging_steps'] > 0 and global_step % args['logging_steps'] == 0:
# Log metrics
if args['n_device'] == 1 and args['evaluate_during_training']: # Only evaluate when single GPU otherwise metrics may not average well
y_true, y_pred, eval_loss = evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode="dev")
report = metrics.classification_report(y_true, y_pred, digits=4)
logging.info("Eval at step " + str(global_step) + "\n" + report)
logging.info("eval_loss: " + str(eval_loss))
precision = metrics.precision_score(y_true, y_pred)
recall = metrics.recall_score(y_true, y_pred)
f1 = metrics.f1_score(y_true, y_pred)
with writer.as_default():
tf.summary.scalar("eval_loss", eval_loss, global_step)
tf.summary.scalar("precision", precision, global_step)
tf.summary.scalar("recall", recall, global_step)
tf.summary.scalar("f1", f1, global_step)
lr = optimizer.learning_rate
learning_rate = lr(step)
with writer.as_default():
tf.summary.scalar("lr", learning_rate, global_step)
tf.summary.scalar("loss", (loss_metric.result() - logging_loss) / args['logging_steps'], global_step)
logging_loss = loss_metric.result()
with writer.as_default():
tf.summary.scalar("loss", loss_metric.result(), step=step)
if args['save_steps'] > 0 and global_step % args['save_steps'] == 0:
# Save model checkpoint
output_dir = os.path.join(args['output_dir'], "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model.save_pretrained(output_dir)
logging.info("Saving model checkpoint to %s", output_dir)
train_iterator.child.comment = f'loss : {loss_metric.result()}'
step += 1
train_iterator.write(f'loss epoch {epoch + 1}: {loss_metric.result()}')
loss_metric.reset_states()
logging.info(" Training took time = {}".format(datetime.datetime.now() - current_time))
def evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode):
eval_batch_size = args['per_device_eval_batch_size'] * args['n_device']
eval_dataset, size = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, eval_batch_size, mode=mode)
eval_dataset = strategy.experimental_distribute_dataset(eval_dataset)
preds = None
num_eval_steps = math.ceil(size / eval_batch_size)
master = master_bar(range(1))
eval_iterator = progress_bar(eval_dataset, total=num_eval_steps, parent=master, display=args['n_device'] > 1)
loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)
loss = 0.0
logging.info("***** Running evaluation *****")
logging.info(" Num examples = %d", size)
logging.info(" Batch size = %d", eval_batch_size)
for eval_features, eval_labels in eval_iterator:
inputs = {'attention_mask': eval_features['input_mask'], 'training': False}
if args['model_type'] != "distilbert":
inputs["token_type_ids"] = eval_features['segment_ids'] if args['model_type'] in ["bert", "xlnet"] else None
with strategy.scope():
logits = model(eval_features['input_ids'], **inputs)[0]
tmp_logits = tf.reshape(logits, (-1, len(labels) + 1))
active_loss = tf.reshape(eval_features['input_mask'], (-1,))
active_logits = tf.boolean_mask(tmp_logits, active_loss)
tmp_eval_labels = tf.reshape(eval_labels, (-1,))
active_labels = tf.boolean_mask(tmp_eval_labels, active_loss)
cross_entropy = loss_fct(active_labels, active_logits)
loss += tf.reduce_sum(cross_entropy) * (1.0 / eval_batch_size)
if preds is None:
preds = logits.numpy()
label_ids = eval_labels.numpy()
else:
preds = np.append(preds, logits.numpy(), axis=0)
label_ids = np.append(label_ids, eval_labels.numpy(), axis=0)
preds = np.argmax(preds, axis=2)
y_pred = [[] for _ in range(label_ids.shape[0])]
y_true = [[] for _ in range(label_ids.shape[0])]
loss = loss / num_eval_steps
for i in range(label_ids.shape[0]):
for j in range(label_ids.shape[1]):
if label_ids[i, j] != pad_token_label_id:
y_pred[i].append(labels[preds[i, j] - 1])
y_true[i].append(labels[label_ids[i, j] - 1])
return y_true, y_pred, loss.numpy()
def load_cache(cached_file, max_seq_length):
name_to_features = {
"input_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"input_mask": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
"label_ids": tf.io.FixedLenFeature([max_seq_length], tf.int64),
}
def _decode_record(record):
example = tf.io.parse_single_example(record, name_to_features)
features = {}
features['input_ids'] = example['input_ids']
features['input_mask'] = example['input_mask']
features['segment_ids'] = example['segment_ids']
return features, example['label_ids']
d = tf.data.TFRecordDataset(cached_file)
d = d.map(_decode_record, num_parallel_calls=4)
count = d.reduce(0, lambda x, _: x + 1)
return d, count.numpy()
def save_cache(features, cached_features_file):
writer = tf.io.TFRecordWriter(cached_features_file)
for (ex_index, feature) in enumerate(features):
if ex_index % 5000 == 0:
logging.info("Writing example %d of %d" % (ex_index, len(features)))
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
record_feature = collections.OrderedDict()
record_feature["input_ids"] = create_int_feature(feature.input_ids)
record_feature["input_mask"] = create_int_feature(feature.input_mask)
record_feature["segment_ids"] = create_int_feature(feature.segment_ids)
record_feature["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=record_feature))
writer.write(tf_example.SerializeToString())
writer.close()
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, batch_size, mode):
drop_remainder = True if args['tpu'] or mode == 'train' else False
# Load data features from cache or dataset file
cached_features_file = os.path.join(args['data_dir'], "cached_{}_{}_{}.tf_record".format(mode,
list(filter(None, args['model_name_or_path'].split("/"))).pop(),
str(args['max_seq_length'])))
if os.path.exists(cached_features_file) and not args['overwrite_cache']:
logging.info("Loading features from cached file %s", cached_features_file)
dataset, size = load_cache(cached_features_file, args['max_seq_length'])
else:
logging.info("Creating features from dataset file at %s", args['data_dir'])
examples = read_examples_from_file(args['data_dir'], mode)
features = convert_examples_to_features(examples, labels, args['max_seq_length'], tokenizer,
cls_token_at_end=bool(args['model_type'] in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args['model_type'] in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args['model_type'] in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args['model_type'] in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args['model_type'] in ["xlnet"] else 0,
pad_token_label_id=pad_token_label_id
)
logging.info("Saving features into cached file %s", cached_features_file)
save_cache(features, cached_features_file)
dataset, size = load_cache(cached_features_file, args['max_seq_length'])
if mode == 'train':
dataset = dataset.repeat()
dataset = dataset.shuffle(buffer_size=8192, seed=args['seed'])
dataset = dataset.batch(batch_size, drop_remainder)
dataset = dataset.prefetch(buffer_size=batch_size)
return dataset, size
def main(_):
logging.set_verbosity(logging.INFO)
args = flags.FLAGS.flag_values_dict()
if os.path.exists(args['output_dir']) and os.listdir(
args['output_dir']) and args['do_train'] and not args['overwrite_output_dir']:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args['output_dir']))
if args['fp16']:
tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True})
if args['tpu']:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=args['tpu'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
args['n_device'] = args['num_tpu_cores']
elif len(args['gpus'].split(',')) > 1:
args['n_device'] = len([f"/gpu:{gpu}" for gpu in args['gpus'].split(',')])
strategy = tf.distribute.MirroredStrategy(devices=[f"/gpu:{gpu}" for gpu in args['gpus'].split(',')])
elif args['no_cuda']:
args['n_device'] = 1
strategy = tf.distribute.OneDeviceStrategy(device="/cpu:0")
else:
args['n_device'] = len(args['gpus'].split(','))
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:" + args['gpus'].split(',')[0])
logging.warning("n_device: %s, distributed training: %s, 16-bits training: %s",
args['n_device'], bool(args['n_device'] > 1), args['fp16'])
labels = get_labels(args['labels'])
num_labels = len(labels) + 1
pad_token_label_id = 0
config_class, model_class, tokenizer_class = MODEL_CLASSES[args['model_type']]
config = config_class.from_pretrained(args['config_name'] if args['config_name'] else args['model_name_or_path'],
num_labels=num_labels,
cache_dir=args['cache_dir'] if args['cache_dir'] else None)
logging.info("Training/evaluation parameters %s", args)
# Training
if args['do_train']:
tokenizer = tokenizer_class.from_pretrained(args['tokenizer_name'] if args['tokenizer_name'] else args['model_name_or_path'],
do_lower_case=args['do_lower_case'],
cache_dir=args['cache_dir'] if args['cache_dir'] else None)
with strategy.scope():
model = model_class.from_pretrained(args['model_name_or_path'],
from_pt=bool(".bin" in args['model_name_or_path']),
config=config,
cache_dir=args['cache_dir'] if args['cache_dir'] else None)
model.layers[-1].activation = tf.keras.activations.softmax
train_batch_size = args['per_device_train_batch_size'] * args['n_device']
train_dataset, num_train_examples = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, train_batch_size, mode="train")
train_dataset = strategy.experimental_distribute_dataset(train_dataset)
train(args, strategy, train_dataset, tokenizer, model, num_train_examples, labels, train_batch_size, pad_token_label_id)
if not os.path.exists(args['output_dir']):
os.makedirs(args['output_dir'])
logging.info("Saving model to %s", args['output_dir'])
model.save_pretrained(args['output_dir'])
tokenizer.save_pretrained(args['output_dir'])
# Evaluation
if args['do_eval']:
tokenizer = tokenizer_class.from_pretrained(args['output_dir'], do_lower_case=args['do_lower_case'])
checkpoints = []
results = []
if args['eval_all_checkpoints']:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args['output_dir'] + "/**/" + TF2_WEIGHTS_NAME, recursive=True), key=lambda f: int(''.join(filter(str.isdigit, f)) or -1)))
logging.info("Evaluate the following checkpoints: %s", checkpoints)
if len(checkpoints) == 0:
checkpoints.append(args['output_dir'])
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if re.match(".*checkpoint-[0-9]", checkpoint) else "final"
with strategy.scope():
model = model_class.from_pretrained(checkpoint)
y_true, y_pred, eval_loss = evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode="dev")
report = metrics.classification_report(y_true, y_pred, digits=4)
if global_step:
results.append({global_step + "_report": report, global_step + "_loss": eval_loss})
output_eval_file = os.path.join(args['output_dir'], "eval_results.txt")
with tf.io.gfile.GFile(output_eval_file, "w") as writer:
for res in results:
for key, val in res.items():
if "loss" in key:
logging.info(key + " = " + str(val))
writer.write(key + " = " + str(val))
writer.write("\n")
else:
logging.info(key)
logging.info("\n" + report)
writer.write(key + "\n")
writer.write(report)
writer.write("\n")
if args['do_predict']:
tokenizer = tokenizer_class.from_pretrained(args['output_dir'], do_lower_case=args['do_lower_case'])
model = model_class.from_pretrained(args['output_dir'])
eval_batch_size = args['per_device_eval_batch_size'] * args['n_device']
predict_dataset, _ = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, eval_batch_size, mode="test")
y_true, y_pred, pred_loss = evaluate(args, strategy, model, tokenizer, labels, pad_token_label_id, mode="test")
output_test_results_file = os.path.join(args['output_dir'], "test_results.txt")
output_test_predictions_file = os.path.join(args['output_dir'], "test_predictions.txt")
report = metrics.classification_report(y_true, y_pred, digits=4)
with tf.io.gfile.GFile(output_test_results_file, "w") as writer:
report = metrics.classification_report(y_true, y_pred, digits=4)
logging.info("\n" + report)
writer.write(report)
writer.write("\n\nloss = " + str(pred_loss))
with tf.io.gfile.GFile(output_test_predictions_file, "w") as writer:
with tf.io.gfile.GFile(os.path.join(args['data_dir'], "test.txt"), "r") as f:
example_id = 0
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
writer.write(line)
if not y_pred[example_id]:
example_id += 1
elif y_pred[example_id]:
output_line = line.split()[0] + " " + y_pred[example_id].pop(0) + "\n"
writer.write(output_line)
else:
logging.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("output_dir")
flags.mark_flag_as_required("model_name_or_path")
flags.mark_flag_as_required("model_type")
app.run(main)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning multi-lingual models on XNLI (Bert, DistilBERT, XLM).
Adapted from `examples/run_glue.py`"""
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from tqdm import tqdm, trange
from transformers import (WEIGHTS_NAME,
BertConfig, BertForSequenceClassification, BertTokenizer,
XLMConfig, XLMForSequenceClassification, XLMTokenizer,
DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import xnli_compute_metrics as compute_metrics
from transformers import xnli_output_modes as output_modes
from transformers import xnli_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
logger = logging.getLogger(__name__)
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, DistilBertConfig, XLMConfig)), ())
MODEL_CLASSES = {
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[3]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = batch[2] if args.model_type in ['bert'] else None # XLM and DistilBERT don't use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
eval_task_names = (args.task_name,)
eval_outputs_dirs = (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[3]}
if args.model_type != 'distilbert':
inputs['token_type_ids'] = batch[2] if args.model_type in ['bert'] else None # XLM and DistilBERT don't use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
else:
raise ValueError('No other `output_mode` for XNLI.')
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task](language=args.language, train_language=args.train_language)
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}_{}'.format(
'test' if evaluate else 'train',
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task),
str(args.train_language if (not evaluate and args.train_language is not None) else args.language)))
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
examples = processor.get_test_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
features = convert_examples_to_features(examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
pad_on_left=False,
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=0,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
else:
raise ValueError('No other `output_mode` for XNLI.')
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--language", default=None, type=str, required=True,
help="Evaluation language. Also train language if `train_language` is set to None.")
parser.add_argument("--train_language", default=None, type=str,
help="Train language if is different of the evaluation language.")
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the test set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
# Set seed
set_seed(args)
# Prepare XNLI task
args.task_name = 'xnli'
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name](language=args.language, train_language=args.train_language)
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None)
model = model_class.from_pretrained(args.model_name_or_path,
from_tf=bool('.ckpt' in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main()
# Text Summarization with Pretrained Encoders
This folder contains part of the code necessary to reproduce the results on abstractive summarization from the article [Text Summarization with Pretrained Encoders](https://arxiv.org/pdf/1908.08345.pdf) by [Yang Liu](https://nlp-yang.github.io/) and [Mirella Lapata](https://homepages.inf.ed.ac.uk/mlap/). It can also be used to summarize any document.
The original code can be found on the Yang Liu's [github repository](https://github.com/nlpyang/PreSumm).
The model is loaded with the pre-trained weights for the abstractive summarization model trained on the CNN/Daily Mail dataset with an extractive and then abstractive tasks.
## Setup
```
git clone https://github.com/huggingface/transformers && cd transformers
pip install [--editable] .
pip install nltk py-rouge
cd examples/summarization
```
## Reproduce the authors' results on ROUGE
To be able to reproduce the authors' results on the CNN/Daily Mail dataset you first need to download both CNN and Daily Mail datasets [from Kyunghyun Cho's website](https://cs.nyu.edu/~kcho/DMQA/) (the links next to "Stories") in the same folder. Then uncompress the archives by running:
```bash
tar -xvf cnn_stories.tgz && tar -xvf dailymail_stories.tgz
```
And move all the stories to the same folder. We will refer as `$DATA_PATH` the path to where you uncompressed both archive. Then run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--to_cpu false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
--compute_rouge true
```
The scripts executes on GPU if one is available and if `to_cpu` is not set to `true`. Inference on multiple GPUs is not suported yet. The ROUGE scores will be displayed in the console at the end of evaluation and written in a `rouge_scores.txt` file. The script takes 30 hours to compute with a single Tesla V100 GPU and a batch size of 10 (300,000 texts to summarize).
## Summarize any text
Put the documents that you would like to summarize in a folder (the path to which is referred to as `$DATA_PATH` below) and run the following in the same folder as `run_summarization.py`:
```bash
python run_summarization.py \
--documents_dir $DATA_PATH \
--summaries_output_dir $SUMMARIES_PATH \ # optional
--to_cpu false \
--batch_size 4 \
--min_length 50 \
--max_length 200 \
--beam_size 5 \
--alpha 0.95 \
--block_trigram true \
```
You may want to play around with `min_length`, `max_length` and `alpha` to suit your use case. If you want to compute ROUGE on another dataset you will need to tweak the stories/summaries import in `utils_summarization.py` and tell it where to fetch the reference summaries.
# coding=utf-8
# Copyright 2019 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BertAbs configuration """
import json
import logging
import sys
from transformers import PretrainedConfig
logger = logging.getLogger(__name__)
BERTABS_FINETUNED_CONFIG_MAP = {
"bertabs-finetuned-cnndm": "https://s3.amazonaws.com/models.huggingface.co/bert/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization-config.json",
}
class BertAbsConfig(PretrainedConfig):
r""" Class to store the configuration of the BertAbs model.
Arguments:
max_pos: int
The maximum sequence length that this model will be used with.
enc_layer: int
The numner of hidden layers in the Transformer encoder.
enc_hidden_size: int
The size of the encoder's layers.
enc_heads: int
The number of attention heads for each attention layer in the encoder.
enc_ff_size: int
The size of the encoder's feed-forward layers.
enc_dropout: int
The dropout probabilitiy for all fully connected layers in the
embeddings, layers, pooler and also the attention probabilities in
the encoder.
dec_layer: int
The numner of hidden layers in the decoder.
dec_hidden_size: int
The size of the decoder's layers.
dec_heads: int
The number of attention heads for each attention layer in the decoder.
dec_ff_size: int
The size of the decoder's feed-forward layers.
dec_dropout: int
The dropout probabilitiy for all fully connected layers in the
embeddings, layers, pooler and also the attention probabilities in
the decoder.
"""
pretrained_config_archive_map = BERTABS_FINETUNED_CONFIG_MAP
def __init__(
self,
vocab_size_or_config_json_file=30522,
max_pos=512,
enc_layers=6,
enc_hidden_size=512,
enc_heads=8,
enc_ff_size=512,
enc_dropout=0.2,
dec_layers=6,
dec_hidden_size=768,
dec_heads=8,
dec_ff_size=2048,
dec_dropout=0.2,
**kwargs,
):
super(BertAbsConfig, self).__init__(**kwargs)
if self._input_is_path_to_json(vocab_size_or_config_json_file):
path_to_json = vocab_size_or_config_json_file
with open(path_to_json, "r", encoding="utf-8") as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.max_pos = max_pos
self.enc_layers = enc_layers
self.enc_hidden_size = enc_hidden_size
self.enc_heads = enc_heads
self.enc_ff_size = enc_ff_size
self.enc_dropout = enc_dropout
self.dec_layers = dec_layers
self.dec_hidden_size = dec_hidden_size
self.dec_heads = dec_heads
self.dec_ff_size = dec_ff_size
self.dec_dropout = dec_dropout
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
def _input_is_path_to_json(self, first_argument):
""" Checks whether the first argument passed to config
is the path to a JSON file that contains the config.
"""
is_python_2 = sys.version_info[0] == 2
if is_python_2:
return isinstance(first_argument, unicode)
else:
return isinstance(first_argument, str)
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Convert BertExtAbs's checkpoints.
The script looks like it is doing something trivial but it is not. The "weights"
proposed by the authors are actually the entire model pickled. We need to load
the model within the original codebase to be able to only save its `state_dict`.
"""
import argparse
from collections import namedtuple
import logging
import torch
from models.model_builder import AbsSummarizer # The authors' implementation
from model_bertabs import BertAbsSummarizer
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
SAMPLE_TEXT = 'Hello world! cécé herlolip'
BertAbsConfig = namedtuple(
"BertAbsConfig",
["temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout"],
)
def convert_bertabs_checkpoints(path_to_checkpoints, dump_path):
""" Copy/paste and tweak the pre-trained weights provided by the creators
of BertAbs for the internal architecture.
"""
# Instantiate the authors' model with the pre-trained weights
config = BertAbsConfig(
temp_dir=".",
finetune_bert=False,
large=False,
share_emb=True,
use_bert_emb=False,
encoder="bert",
max_pos=512,
enc_layers=6,
enc_hidden_size=512,
enc_heads=8,
enc_ff_size=512,
enc_dropout=0.2,
dec_layers=6,
dec_hidden_size=768,
dec_heads=8,
dec_ff_size=2048,
dec_dropout=0.2,
)
checkpoints = torch.load(path_to_checkpoints, lambda storage, loc: storage)
original = AbsSummarizer(config, torch.device("cpu"), checkpoints)
original.eval()
new_model = BertAbsSummarizer(config, torch.device("cpu"))
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model")
new_model.bert.load_state_dict(original.bert.state_dict())
new_model.decoder.load_state_dict(original.decoder.state_dict())
new_model.generator.load_state_dict(original.generator.state_dict())
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# prepare the model inputs
encoder_input_ids = tokenizer.encode("This is sample éàalj'-.")
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(encoder_input_ids)))
encoder_input_ids = torch.tensor(encoder_input_ids).unsqueeze(0)
decoder_input_ids = tokenizer.encode("This is sample 3 éàalj'-.")
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(decoder_input_ids)))
decoder_input_ids = torch.tensor(decoder_input_ids).unsqueeze(0)
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0
# forward pass
src = encoder_input_ids
tgt = decoder_input_ids
segs = token_type_ids = None
clss = None
mask_src = encoder_attention_mask = None
mask_tgt = decoder_attention_mask = None
mask_cls = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
output_original_model = original(src, tgt, segs, clss, mask_src, mask_tgt, mask_cls)[0]
output_original_generator = original.generator(output_original_model)
output_converted_model = new_model(encoder_input_ids, decoder_input_ids, token_type_ids, encoder_attention_mask, decoder_attention_mask)[0]
output_converted_generator = new_model.generator(output_converted_model)
maximum_absolute_difference = torch.max(torch.abs(output_converted_model - output_original_model)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference))
maximum_absolute_difference = torch.max(torch.abs(output_converted_generator - output_original_generator)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference))
are_identical = torch.allclose(output_converted_model, output_original_model, atol=1e-3)
if are_identical:
logging.info("all weights are equal up to 1e-3")
else:
raise ValueError("the weights are different. The new model is likely different from the original one.")
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary")
torch.save(new_model.state_dict(), "bertabs-finetuned-cnndm-extractive-abstractive-summarization-pytorch_model.bin")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
args = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
# MIT License
# Copyright (c) 2019 Yang Liu and the HuggingFace team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import copy
import math
import numpy as np
import torch
from torch import nn
from torch.nn.init import xavier_uniform_
from transformers import BertModel, BertConfig, PreTrainedModel
from configuration_bertabs import BertAbsConfig
MAX_SIZE = 5000
BERTABS_FINETUNED_MODEL_MAP = {
"bertabs-finetuned-cnndm": "https://s3.amazonaws.com/models.huggingface.co/bert/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization-pytorch_model.bin",
}
class BertAbsPreTrainedModel(PreTrainedModel):
config_class = BertAbsConfig
pretrained_model_archive_map = BERTABS_FINETUNED_MODEL_MAP
load_tf_weights = False
base_model_prefix = "bert"
class BertAbs(BertAbsPreTrainedModel):
def __init__(self, args, checkpoint=None, bert_extractive_checkpoint=None):
super(BertAbs, self).__init__(args)
self.args = args
self.bert = Bert()
# If pre-trained weights are passed for Bert, load these.
load_bert_pretrained_extractive = True if bert_extractive_checkpoint else False
if load_bert_pretrained_extractive:
self.bert.model.load_state_dict(
dict(
[
(n[11:], p)
for n, p in bert_extractive_checkpoint.items()
if n.startswith("bert.model")
]
),
strict=True,
)
self.vocab_size = self.bert.model.config.vocab_size
if args.max_pos > 512:
my_pos_embeddings = nn.Embedding(
args.max_pos, self.bert.model.config.hidden_size
)
my_pos_embeddings.weight.data[
:512
] = self.bert.model.embeddings.position_embeddings.weight.data
my_pos_embeddings.weight.data[
512:
] = self.bert.model.embeddings.position_embeddings.weight.data[-1][
None, :
].repeat(
args.max_pos - 512, 1
)
self.bert.model.embeddings.position_embeddings = my_pos_embeddings
tgt_embeddings = nn.Embedding(
self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0
)
tgt_embeddings.weight = copy.deepcopy(
self.bert.model.embeddings.word_embeddings.weight
)
self.decoder = TransformerDecoder(
self.args.dec_layers,
self.args.dec_hidden_size,
heads=self.args.dec_heads,
d_ff=self.args.dec_ff_size,
dropout=self.args.dec_dropout,
embeddings=tgt_embeddings,
vocab_size=self.vocab_size,
)
gen_func = nn.LogSoftmax(dim=-1)
self.generator = nn.Sequential(
nn.Linear(args.dec_hidden_size, args.vocab_size), gen_func
)
self.generator[0].weight = self.decoder.embeddings.weight
load_from_checkpoints = False if checkpoint is None else True
if load_from_checkpoints:
self.load_state_dict(checkpoint)
def init_weights(self):
for module in self.decoder.modules():
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
for p in self.generator.parameters():
if p.dim() > 1:
xavier_uniform_(p)
else:
p.data.zero_()
def forward(
self,
encoder_input_ids,
decoder_input_ids,
token_type_ids,
encoder_attention_mask,
decoder_attention_mask,
):
encoder_output = self.bert(
input_ids=encoder_input_ids,
token_type_ids=token_type_ids,
attention_mask=encoder_attention_mask,
)
encoder_hidden_states = encoder_output[0]
dec_state = self.decoder.init_decoder_state(
encoder_input_ids, encoder_hidden_states
)
decoder_outputs, _ = self.decoder(
decoder_input_ids[:, :-1], encoder_hidden_states, dec_state
)
return decoder_outputs
class Bert(nn.Module):
""" This class is not really necessary and should probably disappear.
"""
def __init__(self):
super(Bert, self).__init__()
config = BertConfig.from_pretrained("bert-base-uncased")
self.model = BertModel(config)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, **kwargs):
self.eval()
with torch.no_grad():
encoder_outputs, _ = self.model(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
**kwargs
)
return encoder_outputs
class TransformerDecoder(nn.Module):
"""
The Transformer decoder from "Attention is All You Need".
Args:
num_layers (int): number of encoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
dropout (float): dropout parameters
embeddings (:obj:`onmt.modules.Embeddings`):
embeddings to use, should have positional encodings
attn_type (str): if using a seperate copy attention
"""
def __init__(self, num_layers, d_model, heads, d_ff, dropout, embeddings, vocab_size):
super(TransformerDecoder, self).__init__()
# Basic attributes.
self.decoder_type = "transformer"
self.num_layers = num_layers
self.embeddings = embeddings
self.pos_emb = PositionalEncoding(dropout, self.embeddings.embedding_dim)
# Build TransformerDecoder.
self.transformer_layers = nn.ModuleList(
[
TransformerDecoderLayer(d_model, heads, d_ff, dropout)
for _ in range(num_layers)
]
)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
# forward(input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask)
# def forward(self, input_ids, state, attention_mask=None, memory_lengths=None,
# step=None, cache=None, encoder_attention_mask=None, encoder_hidden_states=None, memory_masks=None):
def forward(
self,
input_ids,
encoder_hidden_states=None,
state=None,
attention_mask=None,
memory_lengths=None,
step=None,
cache=None,
encoder_attention_mask=None,
):
"""
See :obj:`onmt.modules.RNNDecoderBase.forward()`
memory_bank = encoder_hidden_states
"""
# Name conversion
tgt = input_ids
memory_bank = encoder_hidden_states
memory_mask = encoder_attention_mask
# src_words = state.src
src_words = state.src
src_batch, src_len = src_words.size()
padding_idx = self.embeddings.padding_idx
# Decoder padding mask
tgt_words = tgt
tgt_batch, tgt_len = tgt_words.size()
tgt_pad_mask = (
tgt_words.data.eq(padding_idx).unsqueeze(1).expand(tgt_batch, tgt_len, tgt_len)
)
# Encoder padding mask
if memory_mask is not None:
src_len = memory_mask.size(-1)
src_pad_mask = memory_mask.expand(src_batch, tgt_len, src_len)
else:
src_pad_mask = (
src_words.data.eq(padding_idx)
.unsqueeze(1)
.expand(src_batch, tgt_len, src_len)
)
# Pass through the embeddings
emb = self.embeddings(input_ids)
output = self.pos_emb(emb, step)
assert emb.dim() == 3 # len x batch x embedding_dim
if state.cache is None:
saved_inputs = []
for i in range(self.num_layers):
prev_layer_input = None
if state.cache is None:
if state.previous_input is not None:
prev_layer_input = state.previous_layer_inputs[i]
output, all_input = self.transformer_layers[i](
output,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=prev_layer_input,
layer_cache=state.cache["layer_{}".format(i)]
if state.cache is not None
else None,
step=step,
)
if state.cache is None:
saved_inputs.append(all_input)
if state.cache is None:
saved_inputs = torch.stack(saved_inputs)
output = self.layer_norm(output)
if state.cache is None:
state = state.update_state(tgt, saved_inputs)
# Decoders in transformers return a tuple. Beam search will fail
# if we don't follow this convention.
return output, state # , state
def init_decoder_state(self, src, memory_bank, with_cache=False):
""" Init decoder state """
state = TransformerDecoderState(src)
if with_cache:
state._init_cache(memory_bank, self.num_layers)
return state
class PositionalEncoding(nn.Module):
def __init__(self, dropout, dim, max_len=5000):
pe = torch.zeros(max_len, dim)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(
(torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim))
)
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0)
super(PositionalEncoding, self).__init__()
self.register_buffer("pe", pe)
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
def forward(self, emb, step=None):
emb = emb * math.sqrt(self.dim)
if step:
emb = emb + self.pe[:, step][:, None, :]
else:
emb = emb + self.pe[:, : emb.size(1)]
emb = self.dropout(emb)
return emb
def get_emb(self, emb):
return self.pe[:, : emb.size(1)]
class TransformerDecoderLayer(nn.Module):
"""
Args:
d_model (int): the dimension of keys/values/queries in
MultiHeadedAttention, also the input size of
the first-layer of the PositionwiseFeedForward.
heads (int): the number of heads for MultiHeadedAttention.
d_ff (int): the second-layer of the PositionwiseFeedForward.
dropout (float): dropout probability(0-1.0).
self_attn_type (string): type of self-attention scaled-dot, average
"""
def __init__(self, d_model, heads, d_ff, dropout):
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.context_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
self.drop = nn.Dropout(dropout)
mask = self._get_attn_subsequent_mask(MAX_SIZE)
# Register self.mask as a buffer in TransformerDecoderLayer, so
# it gets TransformerDecoderLayer's cuda behavior automatically.
self.register_buffer("mask", mask)
def forward(
self,
inputs,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=None,
layer_cache=None,
step=None,
):
"""
Args:
inputs (`FloatTensor`): `[batch_size x 1 x model_dim]`
memory_bank (`FloatTensor`): `[batch_size x src_len x model_dim]`
src_pad_mask (`LongTensor`): `[batch_size x 1 x src_len]`
tgt_pad_mask (`LongTensor`): `[batch_size x 1 x 1]`
Returns:
(`FloatTensor`, `FloatTensor`, `FloatTensor`):
* output `[batch_size x 1 x model_dim]`
* attn `[batch_size x 1 x src_len]`
* all_input `[batch_size x current_step x model_dim]`
"""
dec_mask = torch.gt(
tgt_pad_mask + self.mask[:, : tgt_pad_mask.size(1), : tgt_pad_mask.size(1)], 0
)
input_norm = self.layer_norm_1(inputs)
all_input = input_norm
if previous_input is not None:
all_input = torch.cat((previous_input, input_norm), dim=1)
dec_mask = None
query = self.self_attn(
all_input,
all_input,
input_norm,
mask=dec_mask,
layer_cache=layer_cache,
type="self",
)
query = self.drop(query) + inputs
query_norm = self.layer_norm_2(query)
mid = self.context_attn(
memory_bank,
memory_bank,
query_norm,
mask=src_pad_mask,
layer_cache=layer_cache,
type="context",
)
output = self.feed_forward(self.drop(mid) + query)
return output, all_input
# return output
def _get_attn_subsequent_mask(self, size):
"""
Get an attention mask to avoid using the subsequent info.
Args:
size: int
Returns:
(`LongTensor`):
* subsequent_mask `[1 x size x size]`
"""
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype("uint8")
subsequent_mask = torch.from_numpy(subsequent_mask)
return subsequent_mask
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from
"Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
.. mermaid::
graph BT
A[key]
B[value]
C[query]
O[output]
subgraph Attn
D[Attn 1]
E[Attn 2]
F[Attn N]
end
A --> D
C --> D
A --> E
C --> E
A --> F
C --> F
D --> O
E --> O
F --> O
B --> O
Also includes several additional tricks.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, head_count, model_dim, dropout=0.1, use_final_linear=True):
assert model_dim % head_count == 0
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super(MultiHeadedAttention, self).__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_values = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_query = nn.Linear(model_dim, head_count * self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.use_final_linear = use_final_linear
if self.use_final_linear:
self.final_linear = nn.Linear(model_dim, model_dim)
def forward(
self,
key,
value,
query,
mask=None,
layer_cache=None,
type=None,
predefined_graph_1=None,
):
"""
Compute the context vector and the attention vectors.
Args:
key (`FloatTensor`): set of `key_len`
key vectors `[batch, key_len, dim]`
value (`FloatTensor`): set of `key_len`
value vectors `[batch, key_len, dim]`
query (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, dim]`
mask: binary mask indicating which keys have
non-zero attention `[batch, query_len, key_len]`
Returns:
(`FloatTensor`, `FloatTensor`) :
* output context vectors `[batch, query_len, dim]`
* one of the attention vectors `[batch, query_len, key_len]`
"""
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x):
""" projection """
return x.view(batch_size, -1, head_count, dim_per_head).transpose(1, 2)
def unshape(x):
""" compute context """
return (
x.transpose(1, 2)
.contiguous()
.view(batch_size, -1, head_count * dim_per_head)
)
# 1) Project key, value, and query.
if layer_cache is not None:
if type == "self":
query, key, value = (
self.linear_query(query),
self.linear_keys(query),
self.linear_values(query),
)
key = shape(key)
value = shape(value)
if layer_cache is not None:
device = key.device
if layer_cache["self_keys"] is not None:
key = torch.cat((layer_cache["self_keys"].to(device), key), dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat(
(layer_cache["self_values"].to(device), value), dim=2
)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif type == "context":
query = self.linear_query(query)
if layer_cache is not None:
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = (
layer_cache["memory_keys"],
layer_cache["memory_values"],
)
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key = shape(key)
value = shape(value)
query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3))
if mask is not None:
mask = mask.unsqueeze(1).expand_as(scores)
scores = scores.masked_fill(mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores)
if not predefined_graph_1 is None:
attn_masked = attn[:, -1] * predefined_graph_1
attn_masked = attn_masked / (torch.sum(attn_masked, 2).unsqueeze(2) + 1e-9)
attn = torch.cat([attn[:, :-1], attn_masked.unsqueeze(1)], 1)
drop_attn = self.dropout(attn)
if self.use_final_linear:
context = unshape(torch.matmul(drop_attn, value))
output = self.final_linear(context)
return output
else:
context = torch.matmul(drop_attn, value)
return context
class DecoderState(object):
"""Interface for grouping together the current state of a recurrent
decoder. In the simplest case just represents the hidden state of
the model. But can also be used for implementing various forms of
input_feeding and non-recurrent models.
Modules need to implement this to utilize beam search decoding.
"""
def detach(self):
""" Need to document this """
self.hidden = tuple([_.detach() for _ in self.hidden])
self.input_feed = self.input_feed.detach()
def beam_update(self, idx, positions, beam_size):
""" Need to document this """
for e in self._all:
sizes = e.size()
br = sizes[1]
if len(sizes) == 3:
sent_states = e.view(sizes[0], beam_size, br // beam_size, sizes[2])[
:, :, idx
]
else:
sent_states = e.view(
sizes[0], beam_size, br // beam_size, sizes[2], sizes[3]
)[:, :, idx]
sent_states.data.copy_(sent_states.data.index_select(1, positions))
def map_batch_fn(self, fn):
raise NotImplementedError()
class TransformerDecoderState(DecoderState):
""" Transformer Decoder state base class """
def __init__(self, src):
"""
Args:
src (FloatTensor): a sequence of source words tensors
with optional feature tensors, of size (len x batch).
"""
self.src = src
self.previous_input = None
self.previous_layer_inputs = None
self.cache = None
@property
def _all(self):
"""
Contains attributes that need to be updated in self.beam_update().
"""
if self.previous_input is not None and self.previous_layer_inputs is not None:
return (self.previous_input, self.previous_layer_inputs, self.src)
else:
return (self.src,)
def detach(self):
if self.previous_input is not None:
self.previous_input = self.previous_input.detach()
if self.previous_layer_inputs is not None:
self.previous_layer_inputs = self.previous_layer_inputs.detach()
self.src = self.src.detach()
def update_state(self, new_input, previous_layer_inputs):
state = TransformerDecoderState(self.src)
state.previous_input = new_input
state.previous_layer_inputs = previous_layer_inputs
return state
def _init_cache(self, memory_bank, num_layers):
self.cache = {}
for l in range(num_layers):
layer_cache = {"memory_keys": None, "memory_values": None}
layer_cache["self_keys"] = None
layer_cache["self_values"] = None
self.cache["layer_{}".format(l)] = layer_cache
def repeat_beam_size_times(self, beam_size):
""" Repeat beam_size times along batch dimension. """
self.src = self.src.data.repeat(1, beam_size, 1)
def map_batch_fn(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
self.src = fn(self.src, 0)
if self.cache is not None:
_recursive_map(self.cache)
def gelu(x):
return (
0.5
* x
* (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
)
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
inter = self.dropout_1(self.actv(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
#
# TRANSLATOR
# The following code is used to generate summaries using the
# pre-trained weights and beam search.
#
def build_predictor(args, tokenizer, symbols, model, logger=None):
# we should be able to refactor the global scorer a lot
scorer = GNMTGlobalScorer(args.alpha, length_penalty="wu")
translator = Translator(
args, model, tokenizer, symbols, global_scorer=scorer, logger=logger
)
return translator
class GNMTGlobalScorer(object):
"""
NMT re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`
Args:
alpha (float): length parameter
beta (float): coverage parameter
"""
def __init__(self, alpha, length_penalty):
self.alpha = alpha
penalty_builder = PenaltyBuilder(length_penalty)
self.length_penalty = penalty_builder.length_penalty()
def score(self, beam, logprobs):
"""
Rescores a prediction based on penalty functions
"""
normalized_probs = self.length_penalty(beam, logprobs, self.alpha)
return normalized_probs
class PenaltyBuilder(object):
"""
Returns the Length and Coverage Penalty function for Beam Search.
Args:
length_pen (str): option name of length pen
cov_pen (str): option name of cov pen
"""
def __init__(self, length_pen):
self.length_pen = length_pen
def length_penalty(self):
if self.length_pen == "wu":
return self.length_wu
elif self.length_pen == "avg":
return self.length_average
else:
return self.length_none
"""
Below are all the different penalty terms implemented so far
"""
def length_wu(self, beam, logprobs, alpha=0.0):
"""
NMT length re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`.
"""
modifier = ((5 + len(beam.next_ys)) ** alpha) / ((5 + 1) ** alpha)
return logprobs / modifier
def length_average(self, beam, logprobs, alpha=0.0):
"""
Returns the average probability of tokens in a sequence.
"""
return logprobs / len(beam.next_ys)
def length_none(self, beam, logprobs, alpha=0.0, beta=0.0):
"""
Returns unmodified scores.
"""
return logprobs
class Translator(object):
"""
Uses a model to translate a batch of sentences.
Args:
model (:obj:`onmt.modules.NMTModel`):
NMT model to use for translation
fields (dict of Fields): data fields
beam_size (int): size of beam to use
n_best (int): number of translations produced
max_length (int): maximum length output to produce
global_scores (:obj:`GlobalScorer`):
object to rescore final translations
copy_attn (bool): use copy attention during translation
beam_trace (bool): trace beam search for debugging
logger(logging.Logger): logger.
"""
def __init__(self, args, model, vocab, symbols, global_scorer=None, logger=None):
self.logger = logger
self.args = args
self.model = model
self.generator = self.model.generator
self.vocab = vocab
self.symbols = symbols
self.start_token = symbols["BOS"]
self.end_token = symbols["EOS"]
self.global_scorer = global_scorer
self.beam_size = args.beam_size
self.min_length = args.min_length
self.max_length = args.max_length
def translate(self, batch, step, attn_debug=False):
""" Generates summaries from one batch of data.
"""
self.model.eval()
with torch.no_grad():
batch_data = self.translate_batch(batch)
translations = self.from_batch(batch_data)
return translations
def translate_batch(self, batch, fast=False):
"""
Translate a batch of sentences.
Mostly a wrapper around :obj:`Beam`.
Args:
batch (:obj:`Batch`): a batch from a dataset object
data (:obj:`Dataset`): the dataset object
fast (bool): enables fast beam search (may not support all features)
Todo:
Shouldn't need the original dataset.
"""
with torch.no_grad():
return self._fast_translate_batch(
batch, self.max_length, min_length=self.min_length
)
# Where the beam search lives
# I have no idea why it is being called from the method above
def _fast_translate_batch(self, batch, max_length, min_length=0):
""" Beam Search using the encoder inputs contained in `batch`.
"""
# The batch object is funny
# Instead of just looking at the size of the arguments we encapsulate
# a size argument.
# Where is it defined?
beam_size = self.beam_size
batch_size = batch.batch_size
src = batch.src
segs = batch.segs
mask_src = batch.mask_src
src_features = self.model.bert(src, segs, mask_src)
dec_states = self.model.decoder.init_decoder_state(
src, src_features, with_cache=True
)
device = src_features.device
# Tile states and memory beam_size times.
dec_states.map_batch_fn(lambda state, dim: tile(state, beam_size, dim=dim))
src_features = tile(src_features, beam_size, dim=0)
batch_offset = torch.arange(batch_size, dtype=torch.long, device=device)
beam_offset = torch.arange(
0, batch_size * beam_size, step=beam_size, dtype=torch.long, device=device
)
alive_seq = torch.full(
[batch_size * beam_size, 1], self.start_token, dtype=torch.long, device=device
)
# Give full probability to the first beam on the first step.
topk_log_probs = torch.tensor(
[0.0] + [float("-inf")] * (beam_size - 1), device=device
).repeat(batch_size)
# Structure that holds finished hypotheses.
hypotheses = [[] for _ in range(batch_size)] # noqa: F812
results = {}
results["predictions"] = [[] for _ in range(batch_size)] # noqa: F812
results["scores"] = [[] for _ in range(batch_size)] # noqa: F812
results["gold_score"] = [0] * batch_size
results["batch"] = batch
for step in range(max_length):
decoder_input = alive_seq[:, -1].view(1, -1)
# Decoder forward.
decoder_input = decoder_input.transpose(0, 1)
dec_out, dec_states = self.model.decoder(
decoder_input, src_features, dec_states, step=step
)
# Generator forward.
log_probs = self.generator.forward(dec_out.transpose(0, 1).squeeze(0))
vocab_size = log_probs.size(-1)
if step < min_length:
log_probs[:, self.end_token] = -1e20
# Multiply probs by the beam probability.
log_probs += topk_log_probs.view(-1).unsqueeze(1)
alpha = self.global_scorer.alpha
length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha
# Flatten probs into a list of possibilities.
curr_scores = log_probs / length_penalty
if self.args.block_trigram:
cur_len = alive_seq.size(1)
if cur_len > 3:
for i in range(alive_seq.size(0)):
fail = False
words = [int(w) for w in alive_seq[i]]
words = [self.vocab.ids_to_tokens[w] for w in words]
words = " ".join(words).replace(" ##", "").split()
if len(words) <= 3:
continue
trigrams = [
(words[i - 1], words[i], words[i + 1])
for i in range(1, len(words) - 1)
]
trigram = tuple(trigrams[-1])
if trigram in trigrams[:-1]:
fail = True
if fail:
curr_scores[i] = -10e20
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1)
# Recover log probs.
topk_log_probs = topk_scores * length_penalty
# Resolve beam origin and true word ids.
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
# Map beam_index to batch_index in the flat representation.
batch_index = topk_beam_index + beam_offset[
: topk_beam_index.size(0)
].unsqueeze(1)
select_indices = batch_index.view(-1)
# Append last prediction.
alive_seq = torch.cat(
[alive_seq.index_select(0, select_indices), topk_ids.view(-1, 1)], -1
)
is_finished = topk_ids.eq(self.end_token)
if step + 1 == max_length:
is_finished.fill_(1)
# End condition is top beam is finished.
end_condition = is_finished[:, 0].eq(1)
# Save finished hypotheses.
if is_finished.any():
predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1))
for i in range(is_finished.size(0)):
b = batch_offset[i]
if end_condition[i]:
is_finished[i].fill_(1)
finished_hyp = is_finished[i].nonzero().view(-1)
# Store finished hypotheses for this batch.
for j in finished_hyp:
hypotheses[b].append((topk_scores[i, j], predictions[i, j, 1:]))
# If the batch reached the end, save the n_best hypotheses.
if end_condition[i]:
best_hyp = sorted(hypotheses[b], key=lambda x: x[0], reverse=True)
score, pred = best_hyp[0]
results["scores"][b].append(score)
results["predictions"][b].append(pred)
non_finished = end_condition.eq(0).nonzero().view(-1)
# If all sentences are translated, no need to go further.
if len(non_finished) == 0:
break
# Remove finished batches for the next step.
topk_log_probs = topk_log_probs.index_select(0, non_finished)
batch_index = batch_index.index_select(0, non_finished)
batch_offset = batch_offset.index_select(0, non_finished)
alive_seq = predictions.index_select(0, non_finished).view(
-1, alive_seq.size(-1)
)
# Reorder states.
select_indices = batch_index.view(-1)
src_features = src_features.index_select(0, select_indices)
dec_states.map_batch_fn(
lambda state, dim: state.index_select(dim, select_indices)
)
return results
def from_batch(self, translation_batch):
batch = translation_batch["batch"]
assert len(translation_batch["gold_score"]) == len(translation_batch["predictions"])
batch_size = batch.batch_size
preds, _, _, tgt_str, src = (
translation_batch["predictions"],
translation_batch["scores"],
translation_batch["gold_score"],
batch.tgt_str,
batch.src,
)
translations = []
for b in range(batch_size):
pred_sents = self.vocab.convert_ids_to_tokens([int(n) for n in preds[b][0]])
pred_sents = " ".join(pred_sents).replace(" ##", "")
gold_sent = " ".join(tgt_str[b].split())
raw_src = [self.vocab.ids_to_tokens[int(t)] for t in src[b]][:500]
raw_src = " ".join(raw_src)
translation = (pred_sents, gold_sent, raw_src)
translations.append(translation)
return translations
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = (
x.view(batch, -1)
.transpose(0, 1)
.repeat(count, 1)
.transpose(0, 1)
.contiguous()
.view(*out_size)
)
if dim != 0:
x = x.permute(perm).contiguous()
return x
#
# Optimizer for training. We keep this here in case we want to add
# a finetuning script.
#
class BertSumOptimizer(object):
""" Specific optimizer for BertSum.
As described in [1], the authors fine-tune BertSum for abstractive
summarization using two Adam Optimizers with different warm-up steps and
learning rate. They also use a custom learning rate scheduler.
[1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
arXiv preprint arXiv:1908.08345 (2019).
"""
def __init__(self, model, lr, warmup_steps, beta_1=0.99, beta_2=0.999, eps=1e-8):
self.encoder = model.encoder
self.decoder = model.decoder
self.lr = lr
self.warmup_steps = warmup_steps
self.optimizers = {
"encoder": torch.optim.Adam(
model.encoder.parameters(),
lr=lr["encoder"],
betas=(beta_1, beta_2),
eps=eps,
),
"decoder": torch.optim.Adam(
model.decoder.parameters(),
lr=lr["decoder"],
betas=(beta_1, beta_2),
eps=eps,
),
}
self._step = 0
self.current_learning_rates = {}
def _update_rate(self, stack):
return self.lr[stack] * min(
self._step ** (-0.5), self._step * self.warmup_steps[stack] ** (-1.5)
)
def zero_grad(self):
self.optimizer_decoder.zero_grad()
self.optimizer_encoder.zero_grad()
def step(self):
self._step += 1
for stack, optimizer in self.optimizers.items():
new_rate = self._update_rate(stack)
for param_group in optimizer.param_groups:
param_group["lr"] = new_rate
optimizer.step()
self.current_learning_rates[stack] = new_rate
# progress bars in model download and training scripts
tqdm
# Accessing files from S3 directly.
boto3
# Used for downloading models over HTTP
requests
# For ROUGE
nltk
py-rouge
#! /usr/bin/python3
import argparse
from collections import namedtuple
import logging
import os
import sys
import torch
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
from transformers import BertTokenizer
from modeling_bertabs import BertAbs, build_predictor
from utils_summarization import (
SummarizationDataset,
encode_for_summarization,
build_mask,
fit_to_block_size,
compute_token_type_ids,
)
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Batch = namedtuple(
"Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"]
)
def evaluate(args):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
model = BertAbs.from_pretrained("bertabs-finetuned-cnndm")
model.to(args.device)
model.eval()
symbols = {
"BOS": tokenizer.vocab["[unused0]"],
"EOS": tokenizer.vocab["[unused1]"],
"PAD": tokenizer.vocab["[PAD]"],
}
if args.compute_rouge:
reference_summaries = []
generated_summaries = []
import rouge
import nltk
nltk.download('punkt')
rouge_evaluator = rouge.Rouge(
metrics=['rouge-n', 'rouge-l'],
max_n=2,
limit_length=True,
length_limit=args.beam_size,
length_limit_type='words',
apply_avg=True,
apply_best=False,
alpha=0.5, # Default F1_score
weight_factor=1.2,
stemming=True,
)
# these (unused) arguments are defined to keep the compatibility
# with the legacy code and will be deleted in a next iteration.
args.result_path = ""
args.temp_dir = ""
data_iterator = build_data_iterator(args, tokenizer)
predictor = build_predictor(args, tokenizer, symbols, model)
logger.info("***** Running evaluation *****")
logger.info(" Number examples = %d", len(data_iterator.dataset))
logger.info(" Batch size = %d", args.batch_size)
logger.info("")
logger.info("***** Beam Search parameters *****")
logger.info(" Beam size = %d", args.beam_size)
logger.info(" Minimum length = %d", args.min_length)
logger.info(" Maximum length = %d", args.max_length)
logger.info(" Alpha (length penalty) = %.2f", args.alpha)
logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))
for batch in tqdm(data_iterator):
batch_data = predictor.translate_batch(batch)
translations = predictor.from_batch(batch_data)
summaries = [format_summary(t) for t in translations]
save_summaries(summaries, args.summaries_output_dir, batch.document_names)
if args.compute_rouge:
reference_summaries += batch.tgt_str
generated_summaries += summaries
if args.compute_rouge:
scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
str_scores = format_rouge_scores(scores)
save_rouge_scores(str_scores)
print(str_scores)
def save_summaries(summaries, path, original_document_name):
""" Write the summaries in fies that are prefixed by the original
files' name with the `_summary` appended.
Attributes:
original_document_names: List[string]
Name of the document that was summarized.
path: string
Path were the summaries will be written
summaries: List[string]
The summaries that we produced.
"""
for summary, document_name in zip(summaries, original_document_name):
# Prepare the summary file's name
if "." in document_name:
bare_document_name = ".".join(document_name.split(".")[:-1])
extension = document_name.split(".")[-1]
name = bare_document_name + "_summary." + extension
else:
name = document_name + "_summary"
file_path = os.path.join(path, name)
with open(file_path, "w") as output:
output.write(summary)
def format_summary(translation):
""" Transforms the output of the `from_batch` function
into nicely formatted summaries.
"""
raw_summary, _, _ = translation
summary = (
raw_summary.replace("[unused0]", "")
.replace("[unused3]", "")
.replace("[PAD]", "")
.replace("[unused1]", "")
.replace(r" +", " ")
.replace(" [unused2] ", ". ")
.replace("[unused2]", "")
.strip()
)
return summary
def format_rouge_scores(scores):
return """\n
****** ROUGE SCORES ******
** ROUGE 1
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE 2
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE L
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}""".format(
scores['rouge-1']['f'],
scores['rouge-1']['p'],
scores['rouge-1']['r'],
scores['rouge-2']['f'],
scores['rouge-2']['p'],
scores['rouge-2']['r'],
scores['rouge-l']['f'],
scores['rouge-l']['p'],
scores['rouge-l']['r'],
)
def save_rouge_scores(str_scores):
with open("rouge_scores.txt", "w") as output:
output.write(str_scores)
#
# LOAD the dataset
#
def build_data_iterator(args, tokenizer):
dataset = load_and_cache_examples(args, tokenizer)
sampler = SequentialSampler(dataset)
collate_fn = lambda data: collate(data, tokenizer, block_size=512, device=args.device)
iterator = DataLoader(
dataset, sampler=sampler, batch_size=args.batch_size, collate_fn=collate_fn,
)
return iterator
def load_and_cache_examples(args, tokenizer):
dataset = SummarizationDataset(args.documents_dir)
return dataset
def collate(data, tokenizer, block_size, device):
""" Collate formats the data passed to the data loader.
In particular we tokenize the data batch after batch to avoid keeping them
all in memory. We output the data as a namedtuple to fit the original BertAbs's
API.
"""
data = [x for x in data if not len(x[1]) == 0] # remove empty_files
names = [name for name, _, _ in data]
summaries = [" ".join(summary_list) for _, _, summary_list in data]
encoded_text = [
encode_for_summarization(story, summary, tokenizer) for _, story, summary in data
]
encoded_stories = torch.tensor(
[
fit_to_block_size(story, block_size, tokenizer.pad_token_id)
for story, _ in encoded_text
]
)
encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
batch = Batch(
document_names=names,
batch_size=len(encoded_stories),
src=encoded_stories.to(device),
segs=encoder_token_type_ids.to(device),
mask_src=encoder_mask.to(device),
tgt_str=summaries,
)
return batch
def decode_summary(summary_tokens, tokenizer):
""" Decode the summary and return it in a format
suitable for evaluation.
"""
summary_tokens = summary_tokens.to("cpu").numpy()
summary = tokenizer.decode(summary_tokens)
sentences = summary.split(".")
sentences = [s + "." for s in sentences]
return sentences
def main():
""" The main function defines the interface with the users.
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--documents_dir",
default=None,
type=str,
required=True,
help="The folder where the documents to summarize are located.",
)
parser.add_argument(
"--summaries_output_dir",
default=None,
type=str,
required=False,
help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
)
parser.add_argument(
"--compute_rouge",
default=False,
type=bool,
required=False,
help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
)
# EVALUATION options
parser.add_argument(
"--no_cuda",
default=False,
type=bool,
help="Whether to force the execution on CPU.",
)
parser.add_argument(
"--batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.",
)
# BEAM SEARCH arguments
parser.add_argument(
"--min_length",
default=50,
type=int,
help="Minimum number of tokens for the summaries.",
)
parser.add_argument(
"--max_length",
default=200,
type=int,
help="Maixmum number of tokens for the summaries.",
)
parser.add_argument(
"--beam_size",
default=5,
type=int,
help="The number of beams to start with for each example.",
)
parser.add_argument(
"--alpha",
default=0.95,
type=float,
help="The value of alpha for the length penalty in the beam search.",
)
parser.add_argument(
"--block_trigram",
default=True,
type=bool,
help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
)
args = parser.parse_args()
# Select device (distibuted not available)
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# Check the existence of directories
if not args.summaries_output_dir:
args.summaries_output_dir = args.documents_dir
if not documents_dir_is_valid(args.documents_dir):
raise FileNotFoundError(
"We could not find the directory you specified for the documents to summarize, or it was empty. Please specify a valid path."
)
os.makedirs(args.summaries_output_dir, exist_ok=True)
evaluate(args)
def documents_dir_is_valid(path):
if not os.path.exists(path):
return False
file_list = os.listdir(path)
if len(file_list) == 0:
return False
return True
if __name__ == "__main__":
main()
......@@ -10,9 +10,14 @@ from torch.utils.data import Dataset
# ------------
class CNNDailyMailDataset(Dataset):
class SummarizationDataset(Dataset):
""" Abstracts the dataset used to train seq2seq models.
The class will process the documents that are located in the specified
folder. The preprocessing will work on any document that is reasonably
formatted. On the CNN/DailyMail dataset it will extract both the story
and the summary.
CNN/Daily News:
The CNN/Daily News raw datasets are downloaded from [1]. The stories are
......@@ -25,33 +30,33 @@ class CNNDailyMailDataset(Dataset):
[2] https://github.com/abisee/cnn-dailymail/
"""
def __init__(self, tokenizer, prefix="train", data_dir=""):
assert os.path.isdir(data_dir)
self.tokenizer = tokenizer
# We initialize the class by listing all the files that contain
# stories and summaries. Files are not read in memory given
# the size of the corpus.
self.stories_path = []
datasets = ("cnn", "dailymail")
for dataset in datasets:
path_to_stories = os.path.join(data_dir, dataset, "stories")
story_filenames_list = os.listdir(path_to_stories)
for story_filename in story_filenames_list:
path_to_story = os.path.join(path_to_stories, story_filename)
if not os.path.isfile(path_to_story):
continue
self.stories_path.append(path_to_story)
def __init__(self, path="", prefix="train"):
""" We initialize the class by listing all the documents to summarize.
Files are not read in memory due to the size of some datasets (like CNN/DailyMail).
"""
assert os.path.isdir(path)
self.documents = []
story_filenames_list = os.listdir(path)
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
path_to_story = os.path.join(path, story_filename)
if not os.path.isfile(path_to_story):
continue
self.documents.append(path_to_story)
def __len__(self):
return len(self.stories_path)
""" Returns the number of documents. """
return len(self.documents)
def __getitem__(self, idx):
story_path = self.stories_path[idx]
with open(story_path, encoding="utf-8") as source:
document_path = self.documents[idx]
document_name = document_path.split("/")[-1]
with open(document_path, encoding="utf-8") as source:
raw_story = source.read()
story_lines, summary_lines = process_story(raw_story)
return story_lines, summary_lines
return document_name, story_lines, summary_lines
def process_story(raw_story):
......@@ -81,7 +86,7 @@ def process_story(raw_story):
story_lines.append(element)
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None.
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
......@@ -104,31 +109,22 @@ def _add_missing_period(line):
# --------------------------
def fit_to_block_size(sequence, block_size, pad_token):
def fit_to_block_size(sequence, block_size, pad_token_id):
""" Adapt the source and target sequences' lengths to the block size.
If the sequence is shorter than the block size we pad it with -1 ids
which correspond to padding tokens.
If the sequence is shorter we append padding token to the right of the sequence.
"""
if len(sequence) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token] * (block_size - len(sequence)))
sequence.extend([pad_token_id] * (block_size - len(sequence)))
return sequence
def build_lm_labels(sequence, pad_token):
""" Padding token, encoded as 0, are represented by the value -1 so they
are not taken into account in the loss computation. """
padded = sequence.clone()
padded[padded == pad_token] = -1
return padded
def build_mask(sequence, pad_token):
def build_mask(sequence, pad_token_id):
""" Builds the mask. The attention mechanism will only attend to positions
with value 1. """
mask = torch.ones_like(sequence)
idx_pad_tokens = sequence == pad_token
idx_pad_tokens = sequence == pad_token_id
mask[idx_pad_tokens] = 0
return mask
......@@ -138,18 +134,11 @@ def encode_for_summarization(story_lines, summary_lines, tokenizer):
as specified in [1] by using `[SEP] [CLS]` tokens to separate
sentences.
"""
story_lines_token_ids = [
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in story_lines
]
summary_lines_token_ids = [
tokenizer.add_special_tokens_single_sequence(tokenizer.encode(line))
for line in summary_lines
]
story_lines_token_ids = [tokenizer.encode(line) for line in story_lines]
story_token_ids = [
token for sentence in story_lines_token_ids for token in sentence
]
summary_lines_token_ids = [tokenizer.encode(line) for line in summary_lines]
summary_token_ids = [
token for sentence in summary_lines_token_ids for token in sentence
]
......@@ -174,7 +163,7 @@ def compute_token_type_ids(batch, separator_token_id):
"""
batch_embeddings = []
for sequence in batch:
sentence_num = 0
sentence_num = -1
embeddings = []
for s in sequence:
if s == separator_token_id:
......
......@@ -21,7 +21,6 @@ from utils_summarization import (
compute_token_type_ids,
fit_to_block_size,
build_mask,
build_lm_labels,
process_story,
)
......@@ -88,20 +87,6 @@ class SummarizationDataProcessingTest(unittest.TestCase):
expected_summary_lines = ["It was the best of times."]
self.assertEqual(expected_summary_lines, summary_lines)
def test_build_lm_labels_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = sequence
np.testing.assert_array_equal(
build_lm_labels(sequence, 0).numpy(), expected.numpy()
)
def test_build_lm_labels(self):
sequence = torch.tensor([1, 2, 3, 4, 0, 0, 0])
expected = torch.tensor([1, 2, 3, 4, -1, -1, -1])
np.testing.assert_array_equal(
build_lm_labels(sequence, 0).numpy(), expected.numpy()
)
def test_build_mask_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 1, 1, 1])
......@@ -125,7 +110,7 @@ class SummarizationDataProcessingTest(unittest.TestCase):
[[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]]
)
expected = torch.tensor(
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1], [0, 1, 1, 1, 0, 0]]
[[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]]
)
result = compute_token_type_ids(batch, separator)
......
......@@ -72,8 +72,7 @@ class ExamplesTests(unittest.TestCase):
logger.addHandler(stream_handler)
testargs = ["run_squad.py",
"--train_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--predict_file=./examples/tests_samples/SQUAD/dev-v2.0-small.json",
"--data_dir=./examples/tests_samples/SQUAD",
"--model_name=bert-base-uncased",
"--output_dir=./examples/tests_samples/temp_dir",
"--max_steps=10",
......
{
"version": "v2.0",
"data": [{
"title": "Normans",
"paragraphs": [{
"qas": [{
"question": "In what country is Normandy located?",
"id": "56ddde6b9a695914005b9628",
"answers": [{
"text": "France",
"answer_start": 159
}],
"is_impossible": false
}, {
"question": "When were the Normans in Normandy?",
"id": "56ddde6b9a695914005b9629",
"answers": [{
"text": "10th and 11th centuries",
"answer_start": 94
}],
"is_impossible": false
}, {
"question": "From which countries did the Norse originate?",
"id": "56ddde6b9a695914005b962a",
"answers": [{
"text": "Denmark, Iceland and Norway",
"answer_start": 256
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Rollo",
"answer_start": 308
}],
"question": "Who did King Charles III swear fealty to?",
"id": "5ad39d53604f3c001a3fe8d3",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "10th century",
"answer_start": 671
}],
"question": "When did the Frankish identity emerge?",
"id": "5ad39d53604f3c001a3fe8d4",
"answers": [],
"is_impossible": true
}],
"context": "The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse (\"Norman\" comes from \"Norseman\") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries."
}, {
"qas": [{
"question": "Who was the duke in the battle of Hastings?",
"id": "56dddf4066d3e219004dad5f",
"answers": [{
"text": "William the Conqueror",
"answer_start": 1022
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "Antioch",
"answer_start": 1295
}],
"question": "What principality did William the conquerer found?",
"id": "5ad3a266604f3c001a3fea2b",
"answers": [],
"is_impossible": true
}],
"context": "The Norman dynasty had a major political, cultural and military impact on medieval Europe and even the Near East. The Normans were famed for their martial spirit and eventually for their Christian piety, becoming exponents of the Catholic orthodoxy into which they assimilated. They adopted the Gallo-Romance language of the Frankish land they settled, their dialect becoming known as Norman, Normaund or Norman French, an important literary language. The Duchy of Normandy, which they formed by treaty with the French crown, was a great fief of medieval France, and under Richard I of Normandy was forged into a cohesive and formidable principality in feudal tenure. The Normans are noted both for their culture, such as their unique Romanesque architecture and musical traditions, and for their significant military accomplishments and innovations. Norman adventurers founded the Kingdom of Sicily under Roger II after conquering southern Italy on the Saracens and Byzantines, and an expedition on behalf of their duke, William the Conqueror, led to the Norman conquest of England at the Battle of Hastings in 1066. Norman cultural and military influence spread from these new European centres to the Crusader states of the Near East, where their prince Bohemond I founded the Principality of Antioch in the Levant, to Scotland and Wales in Great Britain, to Ireland, and to the coasts of north Africa and the Canary Islands."
}]
}, {
"title": "Computational_complexity_theory",
"paragraphs": [{
"qas": [{
"question": "What branch of theoretical computer science deals with broadly classifying computational problems by difficulty and class of relationship?",
"id": "56e16182e3433e1400422e28",
"answers": [{
"text": "Computational complexity theory",
"answer_start": 0
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "algorithm",
"answer_start": 472
}],
"question": "What is a manual application of mathematical steps?",
"id": "5ad5316b5b96ef001a10ab76",
"answers": [],
"is_impossible": true
}],
"context": "Computational complexity theory is a branch of the theory of computation in theoretical computer science that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other. A computational problem is understood to be a task that is in principle amenable to being solved by a computer, which is equivalent to stating that the problem may be solved by mechanical application of mathematical steps, such as an algorithm."
}, {
"qas": [{
"question": "What measure of a computational problem broadly defines the inherent difficulty of the solution?",
"id": "56e16839cd28a01900c67887",
"answers": [{
"text": "if its solution requires significant resources",
"answer_start": 46
}],
"is_impossible": false
}, {
"question": "What method is used to intuitively assess or quantify the amount of resources required to solve a computational problem?",
"id": "56e16839cd28a01900c67888",
"answers": [{
"text": "mathematical models of computation",
"answer_start": 176
}],
"is_impossible": false
}, {
"question": "What are two basic primary resources used to guage complexity?",
"id": "56e16839cd28a01900c67889",
"answers": [{
"text": "time and storage",
"answer_start": 305
}],
"is_impossible": false
}, {
"plausible_answers": [{
"text": "the number of gates in a circuit",
"answer_start": 436
}],
"question": "What unit is measured to determine circuit simplicity?",
"id": "5ad532575b96ef001a10ab7f",
"answers": [],
"is_impossible": true
}, {
"plausible_answers": [{
"text": "the number of processors",
"answer_start": 502
}],
"question": "What number is used in perpendicular computing?",
"id": "5ad532575b96ef001a10ab80",
"answers": [],
"is_impossible": true
}],
"context": "A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). One of the roles of computational complexity theory is to determine the practical limits on what computers can and cannot do."
}]
}]
}
\ No newline at end of file
""" Official evaluation script for SQuAD version 2.0.
Modified by XLNet authors to update `find_best_threshold` scripts for SQuAD V2.0
In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import argparse
import collections
import json
import numpy as np
import os
import re
import string
import sys
class EVAL_OPTS():
def __init__(self, data_file, pred_file, out_file="",
na_prob_file="na_prob.json", na_prob_thresh=1.0,
out_image_dir=None, verbose=False):
self.data_file = data_file
self.pred_file = pred_file
self.out_file = out_file
self.na_prob_file = na_prob_file
self.na_prob_thresh = na_prob_thresh
self.out_image_dir = out_image_dir
self.verbose = verbose
OPTS = None
def parse_args():
parser = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.')
parser.add_argument('data_file', metavar='data.json', help='Input data JSON file.')
parser.add_argument('pred_file', metavar='pred.json', help='Model predictions.')
parser.add_argument('--out-file', '-o', metavar='eval.json',
help='Write accuracy metrics to file (default is stdout).')
parser.add_argument('--na-prob-file', '-n', metavar='na_prob.json',
help='Model estimates of probability of no answer.')
parser.add_argument('--na-prob-thresh', '-t', type=float, default=1.0,
help='Predict "" if no-answer probability exceeds this (default = 1.0).')
parser.add_argument('--out-image-dir', '-p', metavar='out_images', default=None,
help='Save precision-recall curves to directory.')
parser.add_argument('--verbose', '-v', action='store_true')
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def make_qid_to_has_ans(dataset):
qid_to_has_ans = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid_to_has_ans[qa['id']] = bool(qa['answers'])
return qid_to_has_ans
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s: return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(dataset, preds):
exact_scores = {}
f1_scores = {}
for article in dataset:
for p in article['paragraphs']:
for qa in p['qas']:
qid = qa['id']
gold_answers = [a['text'] for a in qa['answers']
if normalize_answer(a['text'])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = ['']
if qid not in preds:
print('Missing prediction for %s' % qid)
continue
a_pred = preds[qid]
# Take max over all gold answers
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores.values()) / total),
('f1', 100.0 * sum(f1_scores.values()) / total),
('total', total),
])
else:
total = len(qid_list)
return collections.OrderedDict([
('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
('total', total),
])
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval['%s_%s' % (prefix, k)] = new_eval[k]
def plot_pr_curve(precisions, recalls, out_image, title):
plt.step(recalls, precisions, color='b', alpha=0.2, where='post')
plt.fill_between(recalls, precisions, step='post', alpha=0.2, color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.title(title)
plt.savefig(out_image)
plt.clf()
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=None, title=None):
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
true_pos = 0.0
cur_p = 1.0
cur_r = 0.0
precisions = [1.0]
recalls = [0.0]
avg_prec = 0.0
for i, qid in enumerate(qid_list):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
cur_p = true_pos / float(i+1)
cur_r = true_pos / float(num_true_pos)
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i+1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(cur_p)
recalls.append(cur_r)
if out_image:
plot_pr_curve(precisions, recalls, out_image, title)
return {'ap': 100.0 * avg_prec}
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, out_image_dir):
if out_image_dir and not os.path.exists(out_image_dir):
os.makedirs(out_image_dir)
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
if num_true_pos == 0:
return
pr_exact = make_precision_recall_eval(
exact_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_exact.png'),
title='Precision-Recall curve for Exact Match score')
pr_f1 = make_precision_recall_eval(
f1_raw, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_f1.png'),
title='Precision-Recall curve for F1 score')
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
pr_oracle = make_precision_recall_eval(
oracle_scores, na_probs, num_true_pos, qid_to_has_ans,
out_image=os.path.join(out_image_dir, 'pr_oracle.png'),
title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)')
merge_eval(main_eval, pr_exact, 'pr_exact')
merge_eval(main_eval, pr_f1, 'pr_f1')
merge_eval(main_eval, pr_oracle, 'pr_oracle')
def histogram_na_prob(na_probs, qid_list, image_dir, name):
if not qid_list:
return
x = [na_probs[k] for k in qid_list]
weights = np.ones_like(x) / float(len(x))
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
plt.xlabel('Model probability of no-answer')
plt.ylabel('Proportion of dataset')
plt.title('Histogram of no-answer probability: %s' % name)
plt.savefig(os.path.join(image_dir, 'na_prob_hist_%s.png' % name))
plt.clf()
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores: continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
has_ans_score, has_ans_cnt = 0, 0
for qid in qid_list:
if not qid_to_has_ans[qid]: continue
has_ans_cnt += 1
if qid not in scores: continue
has_ans_score += scores[qid]
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval['best_exact'] = best_exact
main_eval['best_exact_thresh'] = exact_thresh
main_eval['best_f1'] = best_f1
main_eval['best_f1_thresh'] = f1_thresh
main_eval['has_ans_exact'] = has_ans_exact
main_eval['has_ans_f1'] = has_ans_f1
def main(OPTS):
with open(OPTS.data_file) as f:
dataset_json = json.load(f)
dataset = dataset_json['data']
with open(OPTS.pred_file) as f:
preds = json.load(f)
if OPTS.na_prob_file:
with open(OPTS.na_prob_file) as f:
na_probs = json.load(f)
else:
na_probs = {k: 0.0 for k in preds}
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
exact_raw, f1_raw = get_raw_scores(dataset, preds)
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
OPTS.na_prob_thresh)
out_eval = make_eval_dict(exact_thresh, f1_thresh)
if has_ans_qids:
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
merge_eval(out_eval, has_ans_eval, 'HasAns')
if no_ans_qids:
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
merge_eval(out_eval, no_ans_eval, 'NoAns')
if OPTS.na_prob_file:
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs,
qid_to_has_ans, OPTS.out_image_dir)
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, 'hasAns')
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, 'noAns')
if OPTS.out_file:
with open(OPTS.out_file, 'w') as f:
json.dump(out_eval, f)
else:
print(json.dumps(out_eval, indent=2))
return out_eval
if __name__ == '__main__':
OPTS = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
main(OPTS)
......@@ -36,9 +36,15 @@ To create the package for pypi.
from io import open
from setuptools import find_packages, setup
extras = {
'serving': ['uvicorn', 'fastapi']
}
extras['all'] = [package for package in extras.values()]
setup(
name="transformers",
version="2.1.1",
version="2.2.1",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors",
author_email="thomas@huggingface.co",
description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
......@@ -61,8 +67,11 @@ setup(
"transformers=transformers.__main__:main",
]
},
extras_require=extras,
scripts=[
'transformers-cli'
],
# python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
......
......@@ -43,7 +43,7 @@ from transformers import (WEIGHTS_NAME, BertConfig,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
from transformers import AdamW, WarmupLinearSchedule
from transformers import AdamW, get_linear_schedule_with_warmup
from utils_squad import (read_squad_examples, convert_examples_to_features,
RawResult, write_predictions,
......@@ -98,7 +98,7 @@ def train(args, train_dataset, model, tokenizer):
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
......
......@@ -7,7 +7,7 @@ The library is designed to incorporate a variety of models and code bases. As su
One important point though is that the library has the following goals impacting the way models are incorporated:
- one specific feature of the API is the capability to run the model and tokenizer inline. The tokenization code thus often have to be slightly adapted to allow for running in the python interpreter.
- the package is also designed to be as self-consistent and with a small and reliable set of packages dependencies. In consequence, additional dependencies are usually not allowed when adding a model but can be allowed for the inclusion of a new tokenizer (recent examples of dependencies added for tokenizer specificites includes `sentencepiece` and `sacremoses`). Please make sure to check the existing dependencies when possible before adding a new one.
- the package is also designed to be as self-consistent and with a small and reliable set of packages dependencies. In consequence, additional dependencies are usually not allowed when adding a model but can be allowed for the inclusion of a new tokenizer (recent examples of dependencies added for tokenizer specificities include `sentencepiece` and `sacremoses`). Please make sure to check the existing dependencies when possible before adding a new one.
For a quick overview of the library organization, please check the [QuickStart section of the documentation](https://huggingface.co/transformers/quickstart.html).
......@@ -20,7 +20,7 @@ Here an overview of the general workflow:
- [ ] add tests
- [ ] finalize
Let's details what should be done at each step
Let's detail what should be done at each step
## Adding model/configuration/tokenization classes
......@@ -28,16 +28,16 @@ Here is the workflow for adding model/configuration/tokenization classes:
- [ ] copy the python files from the present folder to the main folder and rename them, replacing `xxx` with your model name,
- [ ] edit the files to replace `XXX` (with various casing) with your model name
- [ ] copy-past or create a simple configuration class for your model in the `configuration_...` file
- [ ] copy-past or create the code for your model in the `modeling_...` files (PyTorch and TF 2.0)
- [ ] copy-past or create a tokenizer class for your model in the `tokenization_...` file
- [ ] copy-paste or create a simple configuration class for your model in the `configuration_...` file
- [ ] copy-paste or create the code for your model in the `modeling_...` files (PyTorch and TF 2.0)
- [ ] copy-paste or create a tokenizer class for your model in the `tokenization_...` file
# Adding conversion scripts
Here is the workflow for the conversion scripts:
- [ ] copy the conversion script (`convert_...`) from the present folder to the main folder.
- [ ] edit this scipt to convert your original checkpoint weights to the current pytorch ones.
- [ ] edit this script to convert your original checkpoint weights to the current pytorch ones.
# Adding tests:
......@@ -58,5 +58,5 @@ You can then finish the addition step by adding imports for your classes in the
- [ ] add your models and tokenizer to `pipeline.py`
- [ ] add a link to your conversion script in the main conversion utility (currently in `__main__` but will be moved to the `commands` subfolder in the near future)
- [ ] edit the PyTorch to TF 2.0 conversion script to add your model in the `convert_pytorch_checkpoint_to_tf2.py` file
- [ ] add a mention of your model in the doc: `README.md` and the documentation it-self at `docs/source/pretrained_models.rst`.
- [ ] add a mention of your model in the doc: `README.md` and the documentation itself at `docs/source/pretrained_models.rst`.
- [ ] upload the pretrained weigths, configurations and vocabulary files.
......@@ -34,7 +34,7 @@ import numpy as np
import tensorflow as tf
from .configuration_xxx import XxxConfig
from .modeling_tf_utils import TFPreTrainedModel, get_initializer
from .modeling_tf_utils import TFPreTrainedModel, get_initializer, shape_list
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
......@@ -51,7 +51,7 @@ TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP = {
####################################################
# TF 2.0 Models are constructed using Keras imperative API by sub-classing
# - tf.keras.layers.Layer for the layers and
# - TFPreTrainedModel for the models (it-self a sub-class of tf.keras.Model)
# - TFPreTrainedModel for the models (itself a sub-class of tf.keras.Model)
####################################################
####################################################
......@@ -123,9 +123,9 @@ class TFXxxMainLayer(tf.keras.layers.Layer):
input_ids = inputs
if attention_mask is None:
attention_mask = tf.fill(tf.shape(input_ids), 1)
attention_mask = tf.fill(shape_list(input_ids), 1)
if token_type_ids is None:
token_type_ids = tf.fill(tf.shape(input_ids), 0)
token_type_ids = tf.fill(shape_list(input_ids), 0)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
......@@ -257,6 +257,10 @@ XXX_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings("The bare Xxx Model transformer outputing raw hidden-states without any specific head on top.",
......
......@@ -122,7 +122,7 @@ def load_tf_weights_in_xxx(model, config, tf_checkpoint_path):
####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
# - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
# - PreTrainedModel for the models (itself a sub-class of torch.nn.Module)
####################################################
####################################################
......@@ -240,6 +240,10 @@ XXX_INPUTS_DOCSTRING = r"""
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
**inputs_embeds**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
"""
@add_start_docstrings("The bare Xxx Model transformer outputting raw hidden-states without any specific head on top.",
......@@ -296,11 +300,22 @@ class XxxModel(XxxPreTrainedModel):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
......@@ -334,7 +349,7 @@ class XxxModel(XxxPreTrainedModel):
##################################
# Replace this with your model code
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds)
encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask)
sequence_output = encoder_outputs[0]
outputs = (sequence_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here
......@@ -385,14 +400,15 @@ class XxxForMaskedLM(XxxPreTrainedModel):
def get_output_embeddings(self):
return self.lm_head
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None,
masked_lm_labels=None):
outputs = self.transformer(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
......@@ -450,14 +466,15 @@ class XxxForSequenceClassification(XxxPreTrainedModel):
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, inputs_embeds=None, labels=None):
outputs = self.transformer(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
head_mask=head_mask,
inputs_embeds=inputs_embeds)
pooled_output = outputs[1]
......@@ -521,14 +538,15 @@ class XxxForTokenClassification(XxxPreTrainedModel):
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, labels=None):
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
position_ids=None, head_mask=None, inputs_embeds=None, labels=None):
outputs = self.transformer(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
......@@ -604,14 +622,15 @@ class XxxForQuestionAnswering(XxxPreTrainedModel):
self.init_weights()
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None,
start_positions=None, end_positions=None):
outputs = self.transformer(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask)
head_mask=head_mask,
inputs_embeds=inputs_embeds)
sequence_output = outputs[0]
......
......@@ -18,11 +18,11 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import XxxConfig, is_tf_available
......@@ -33,10 +33,9 @@ if is_tf_available():
TFXxxForTokenClassification,
TFXxxForQuestionAnswering,
TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFXxxModel, TFXxxForMaskedLM, TFXxxForQuestionAnswering,
......@@ -244,7 +243,7 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in ['xxx-base-uncased']:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment