Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
0412f3d9
Unverified
Commit
0412f3d9
authored
Dec 25, 2019
by
Thomas Wolf
Committed by
GitHub
Dec 25, 2019
Browse files
Merge pull request #2291 from aaugustin/fix-flake8-F841
Fix F841 flake8 warning
parents
8742c954
3e0cf495
Changes
17
Show whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
14 additions
and
41 deletions
+14
-41
examples/contrib/run_openai_gpt.py
examples/contrib/run_openai_gpt.py
+0
-6
examples/contrib/run_transfo_xl.py
examples/contrib/run_transfo_xl.py
+1
-3
examples/run_multiple_choice.py
examples/run_multiple_choice.py
+1
-2
examples/summarization/modeling_bertabs.py
examples/summarization/modeling_bertabs.py
+0
-5
setup.cfg
setup.cfg
+1
-1
src/transformers/data/metrics/__init__.py
src/transformers/data/metrics/__init__.py
+1
-1
src/transformers/modeling_albert.py
src/transformers/modeling_albert.py
+0
-5
src/transformers/modeling_t5.py
src/transformers/modeling_t5.py
+1
-1
src/transformers/modeling_tf_pytorch_utils.py
src/transformers/modeling_tf_pytorch_utils.py
+3
-4
src/transformers/modeling_tf_t5.py
src/transformers/modeling_tf_t5.py
+1
-1
src/transformers/modeling_tf_transfo_xl_utilities.py
src/transformers/modeling_tf_transfo_xl_utilities.py
+0
-1
src/transformers/modeling_tf_utils.py
src/transformers/modeling_tf_utils.py
+3
-3
templates/adding_a_new_example_script/utils_xxx.py
templates/adding_a_new_example_script/utils_xxx.py
+0
-2
tests/test_modeling_common.py
tests/test_modeling_common.py
+1
-2
tests/test_modeling_tf_common.py
tests/test_modeling_tf_common.py
+1
-1
tests/test_modeling_tf_xlm.py
tests/test_modeling_tf_xlm.py
+0
-1
tests/test_tokenization_common.py
tests/test_tokenization_common.py
+0
-2
No files found.
examples/contrib/run_openai_gpt.py
View file @
0412f3d9
...
...
@@ -44,13 +44,10 @@ from transformers import (
AdamW
,
OpenAIGPTDoubleHeadsModel
,
OpenAIGPTTokenizer
,
cached_path
,
get_linear_schedule_with_warmup
,
)
ROCSTORIES_URL
=
"https://s3.amazonaws.com/datasets.huggingface.co/ROCStories.tar.gz"
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(name)s - %(message)s"
,
datefmt
=
"%m/%d/%Y %H:%M:%S"
,
level
=
logging
.
INFO
)
...
...
@@ -182,9 +179,6 @@ def main():
model
.
to
(
device
)
# Load and encode the datasets
if
not
args
.
train_dataset
and
not
args
.
eval_dataset
:
roc_stories
=
cached_path
(
ROCSTORIES_URL
)
def
tokenize_and_encode
(
obj
):
""" Tokenize and encode a nested object """
if
isinstance
(
obj
,
str
):
...
...
examples/contrib/run_transfo_xl.py
View file @
0412f3d9
...
...
@@ -28,7 +28,7 @@ import time
import
torch
from
transformers
import
TransfoXLCorpus
,
TransfoXLLMHeadModel
,
TransfoXLTokenizer
from
transformers
import
TransfoXLCorpus
,
TransfoXLLMHeadModel
logging
.
basicConfig
(
...
...
@@ -73,9 +73,7 @@ def main():
# The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax
# and tokenizing the dataset
# The pre-processed corpus is a convertion (using the conversion script )
tokenizer
=
TransfoXLTokenizer
.
from_pretrained
(
args
.
model_name
)
corpus
=
TransfoXLCorpus
.
from_pretrained
(
args
.
model_name
)
ntokens
=
len
(
corpus
.
vocab
)
va_iter
=
corpus
.
get_iterator
(
"valid"
,
args
.
batch_size
,
args
.
tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
te_iter
=
corpus
.
get_iterator
(
"test"
,
args
.
batch_size
,
args
.
tgt_len
,
device
=
device
,
ext_len
=
args
.
ext_len
)
...
...
examples/run_multiple_choice.py
View file @
0412f3d9
...
...
@@ -141,7 +141,7 @@ def train(args, train_dataset, model, tokenizer):
global_step
=
0
tr_loss
,
logging_loss
=
0.0
,
0.0
best_dev_acc
,
best_dev_loss
=
0.0
,
99999999999
.0
best_dev_acc
=
0
.0
best_steps
=
0
model
.
zero_grad
()
train_iterator
=
trange
(
int
(
args
.
num_train_epochs
),
desc
=
"Epoch"
,
disable
=
args
.
local_rank
not
in
[
-
1
,
0
])
...
...
@@ -193,7 +193,6 @@ def train(args, train_dataset, model, tokenizer):
tb_writer
.
add_scalar
(
"eval_{}"
.
format
(
key
),
value
,
global_step
)
if
results
[
"eval_acc"
]
>
best_dev_acc
:
best_dev_acc
=
results
[
"eval_acc"
]
best_dev_loss
=
results
[
"eval_loss"
]
best_steps
=
global_step
if
args
.
do_test
:
results_test
=
evaluate
(
args
,
model
,
tokenizer
,
test
=
True
)
...
...
examples/summarization/modeling_bertabs.py
View file @
0412f3d9
...
...
@@ -446,8 +446,6 @@ class MultiHeadedAttention(nn.Module):
batch_size
=
key
.
size
(
0
)
dim_per_head
=
self
.
dim_per_head
head_count
=
self
.
head_count
key_len
=
key
.
size
(
1
)
query_len
=
query
.
size
(
1
)
def
shape
(
x
):
""" projection """
...
...
@@ -504,9 +502,6 @@ class MultiHeadedAttention(nn.Module):
query
=
shape
(
query
)
key_len
=
key
.
size
(
2
)
query_len
=
query
.
size
(
2
)
# 2) Calculate and scale scores.
query
=
query
/
math
.
sqrt
(
dim_per_head
)
scores
=
torch
.
matmul
(
query
,
key
.
transpose
(
2
,
3
))
...
...
setup.cfg
View file @
0412f3d9
...
...
@@ -25,5 +25,5 @@ multi_line_output = 3
use_parentheses = True
[flake8]
ignore = E203, E501,
F841,
W503
ignore = E203, E501, W503
max-line-length = 119
src/transformers/data/metrics/__init__.py
View file @
0412f3d9
...
...
@@ -19,7 +19,7 @@ try:
from
sklearn.metrics
import
matthews_corrcoef
,
f1_score
_has_sklearn
=
True
except
(
AttributeError
,
ImportError
)
as
e
:
except
(
AttributeError
,
ImportError
):
_has_sklearn
=
False
...
...
src/transformers/modeling_albert.py
View file @
0412f3d9
...
...
@@ -241,8 +241,6 @@ class AlbertAttention(BertSelfAttention):
context_layer
=
torch
.
matmul
(
attention_probs
,
value_layer
)
context_layer
=
context_layer
.
permute
(
0
,
2
,
1
,
3
).
contiguous
()
new_context_layer_shape
=
context_layer
.
size
()[:
-
2
]
+
(
self
.
all_head_size
,)
reshaped_context_layer
=
context_layer
.
view
(
*
new_context_layer_shape
)
# Should find a better way to do this
w
=
(
...
...
@@ -334,9 +332,6 @@ class AlbertTransformer(nn.Module):
# Index of the hidden group
group_idx
=
int
(
i
/
(
self
.
config
.
num_hidden_layers
/
self
.
config
.
num_hidden_groups
))
# Index of the layer inside the group
layer_idx
=
int
(
i
-
group_idx
*
layers_per_group
)
layer_group_output
=
self
.
albert_layer_groups
[
group_idx
](
hidden_states
,
attention_mask
,
...
...
src/transformers/modeling_t5.py
View file @
0412f3d9
...
...
@@ -629,7 +629,7 @@ class T5Stack(T5PreTrainedModel):
all_attentions
=
all_attentions
+
(
layer_outputs
[
1
],)
# We keep only self-attention weights for now
hidden_states
=
self
.
final_layer_norm
(
hidden_states
)
layer_output
=
self
.
dropout
(
hidden_states
)
hidden_states
=
self
.
dropout
(
hidden_states
)
# Add last layer
if
self
.
output_hidden_states
:
...
...
src/transformers/modeling_tf_pytorch_utils.py
View file @
0412f3d9
...
...
@@ -122,7 +122,7 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
tf_inputs
=
tf_model
.
dummy_inputs
if
tf_inputs
is
not
None
:
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
# Adapt state dict - TODO remove this and update the AWS weights files instead
# Convert old format to new format if needed from a PyTorch state_dict
...
...
@@ -187,7 +187,7 @@ def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, a
K
.
batch_set_value
(
weight_value_tuples
)
if
tf_inputs
is
not
None
:
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure restore ops are run
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure restore ops are run
logger
.
info
(
"Loaded {:,} parameters in the TF 2.0 model."
.
format
(
tf_loaded_numel
))
...
...
@@ -218,7 +218,6 @@ def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs
import
transformers
tf_path
=
os
.
path
.
abspath
(
tf_checkpoint_path
)
logger
.
info
(
"Loading TensorFlow weights from {}"
.
format
(
tf_checkpoint_path
))
# Instantiate and load the associated TF 2.0 model
...
...
@@ -230,7 +229,7 @@ def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs
tf_inputs
=
tf_model
.
dummy_inputs
if
tf_inputs
is
not
None
:
tfo
=
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
tf_model
(
tf_inputs
,
training
=
False
)
# Make sure model is built
tf_model
.
load_weights
(
tf_checkpoint_path
,
by_name
=
True
)
...
...
src/transformers/modeling_tf_t5.py
View file @
0412f3d9
...
...
@@ -491,7 +491,7 @@ class TFT5MainLayer(tf.keras.layers.Layer):
all_attentions
=
all_attentions
+
(
layer_outputs
[
1
],)
hidden_states
=
self
.
final_layer_norm
(
hidden_states
)
layer_output
=
self
.
dropout
(
hidden_states
,
training
=
training
)
hidden_states
=
self
.
dropout
(
hidden_states
,
training
=
training
)
# Add last layer
if
self
.
output_hidden_states
:
...
...
src/transformers/modeling_tf_transfo_xl_utilities.py
View file @
0412f3d9
...
...
@@ -118,7 +118,6 @@ class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer):
hidden
,
target
=
inputs
head_logprob
=
0
if
self
.
n_clusters
==
0
:
softmax_b
=
tf
.
get_variable
(
"bias"
,
[
self
.
config
.
vocab_size
],
initializer
=
tf
.
zeros_initializer
())
output
=
self
.
_logit
(
hidden
,
self
.
out_layers
[
0
][
0
],
self
.
out_layers
[
0
][
1
],
self
.
out_projs
[
0
])
if
target
is
not
None
:
loss
=
tf
.
nn
.
sparse_softmax_cross_entropy_with_logits
(
labels
=
target
,
logits
=
output
)
...
...
src/transformers/modeling_tf_utils.py
View file @
0412f3d9
...
...
@@ -320,7 +320,7 @@ class TFPreTrainedModel(tf.keras.Model):
# Load from a PyTorch checkpoint
return
load_pytorch_checkpoint_in_tf2_model
(
model
,
resolved_archive_file
,
allow_missing_keys
=
True
)
ret
=
model
(
model
.
dummy_inputs
,
training
=
False
)
# build the network with dummy inputs
model
(
model
.
dummy_inputs
,
training
=
False
)
# build the network with dummy inputs
assert
os
.
path
.
isfile
(
resolved_archive_file
),
"Error retrieving file {}"
.
format
(
resolved_archive_file
)
# 'by_name' allow us to do transfer learning by skipping/adding layers
...
...
@@ -333,7 +333,7 @@ class TFPreTrainedModel(tf.keras.Model):
"If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. "
)
ret
=
model
(
model
.
dummy_inputs
,
training
=
False
)
# Make sure restore ops are run
model
(
model
.
dummy_inputs
,
training
=
False
)
# Make sure restore ops are run
# Check if the models are the same to output loading informations
with
h5py
.
File
(
resolved_archive_file
,
"r"
)
as
f
:
...
...
@@ -515,7 +515,7 @@ class TFSequenceSummary(tf.keras.layers.Layer):
cls_index
=
inputs
[
1
]
if
len
(
inputs
)
>
1
else
None
assert
len
(
inputs
)
<=
2
,
"Too many inputs."
else
:
input_id
s
=
inputs
.
get
(
"
input_id
s"
)
hidden_state
s
=
inputs
.
get
(
"
hidden_state
s"
)
cls_index
=
inputs
.
get
(
"cls_index"
,
None
)
if
self
.
summary_type
==
"last"
:
...
...
templates/adding_a_new_example_script/utils_xxx.py
View file @
0412f3d9
...
...
@@ -868,8 +868,6 @@ def write_predictions_extended(
orig_data
=
json
.
load
(
reader
)[
"data"
]
qid_to_has_ans
=
make_qid_to_has_ans
(
orig_data
)
has_ans_qids
=
[
k
for
k
,
v
in
qid_to_has_ans
.
items
()
if
v
]
no_ans_qids
=
[
k
for
k
,
v
in
qid_to_has_ans
.
items
()
if
not
v
]
exact_raw
,
f1_raw
=
get_raw_scores
(
orig_data
,
all_predictions
)
out_eval
=
{}
...
...
tests/test_modeling_common.py
View file @
0412f3d9
...
...
@@ -284,7 +284,6 @@ class ModelTesterMixin:
multihead_outputs
=
head_mask
.
grad
attentions
=
outputs
[
-
1
]
hidden_states
=
outputs
[
-
2
]
# Remove Nan
for
t
in
attentions
:
...
...
@@ -590,7 +589,7 @@ class ModelTesterMixin:
inputs_dict
[
"decoder_inputs_embeds"
]
=
wte
(
decoder_input_ids
)
with
torch
.
no_grad
():
outputs
=
model
(
**
inputs_dict
)
model
(
**
inputs_dict
)
class
ConfigTester
(
object
):
...
...
tests/test_modeling_tf_common.py
View file @
0412f3d9
...
...
@@ -332,7 +332,7 @@ class TFModelTesterMixin:
inputs_dict
[
"encoder_inputs_embeds"
]
=
self
.
_get_embeds
(
wte
,
encoder_input_ids
)
inputs_dict
[
"decoder_inputs_embeds"
]
=
self
.
_get_embeds
(
wte
,
decoder_input_ids
)
outputs
=
model
(
inputs_dict
)
model
(
inputs_dict
)
def
ids_tensor
(
shape
,
vocab_size
,
rng
=
None
,
name
=
None
,
dtype
=
None
):
...
...
tests/test_modeling_tf_xlm.py
View file @
0412f3d9
...
...
@@ -224,7 +224,6 @@ class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
inputs
=
{
"input_ids"
:
input_ids
,
"lengths"
:
input_lengths
}
outputs
=
model
(
inputs
)
start_logits
,
end_logits
=
model
(
inputs
)
result
=
{
...
...
tests/test_tokenization_common.py
View file @
0412f3d9
...
...
@@ -159,7 +159,6 @@ class TokenizerTesterMixin:
self
.
assertEqual
(
all_size_2
,
all_size
+
len
(
new_toks
))
tokens
=
tokenizer
.
encode
(
"aaaaa bbbbbb low cccccccccdddddddd l"
,
add_special_tokens
=
False
)
out_string
=
tokenizer
.
decode
(
tokens
)
self
.
assertGreaterEqual
(
len
(
tokens
),
4
)
self
.
assertGreater
(
tokens
[
0
],
tokenizer
.
vocab_size
-
1
)
...
...
@@ -178,7 +177,6 @@ class TokenizerTesterMixin:
tokens
=
tokenizer
.
encode
(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l"
,
add_special_tokens
=
False
)
out_string
=
tokenizer
.
decode
(
tokens
)
self
.
assertGreaterEqual
(
len
(
tokens
),
6
)
self
.
assertGreater
(
tokens
[
0
],
tokenizer
.
vocab_size
-
1
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment