Unverified Commit 02ec02d6 authored by Julien Demouth's avatar Julien Demouth Committed by GitHub
Browse files

Add nvidia megatron models (#10911)



* Add support for NVIDIA Megatron models

* Add support for NVIDIA Megatron GPT2 and BERT

Add the megatron_gpt2 model. That model reuses the existing GPT2 model. This
commit includes a script to convert a Megatron-GPT2 checkpoint downloaded
from NVIDIA GPU Cloud. See examples/megatron-models/README.md for details.

Add the megatron_bert model. That model is implemented as a modification of
the existing BERT model in Transformers. This commit includes a script to
convert a Megatron-BERT checkpoint downloaded from NVIDIA GPU Cloud. See
examples/megatron-models/README.md for details.

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Remove model.half in tests + add "# Copied ..."

Remove the model.half() instruction which makes tests fail on the CPU.

Add a comment "# Copied ..." before many classes in the model to enable automatic
tracking in CI between the new Megatron classes and the original Bert ones.

* Fix issues

* Fix Flax/TF tests

* Fix copyright

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/configuration_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/megatron_bert.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/model_doc/megatron_gpt2.rst
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/__init__.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/convert_megatron_bert_checkpoint.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/megatron_bert/modeling_megatron_bert.py
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Resolve most of 'sgugger' comments

* Fix conversion issue + Run make fix-copies/quality/docs

* Apply suggestions from code review

* Causal LM & merge

* Fix init

* Add CausalLM to last auto class
Co-authored-by: default avatarJulien Demouth <jdemouth@nvidia.com>
Co-authored-by: default avatarLysandre Debut <lysandre@huggingface.co>
Co-authored-by: default avatarSylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: default avatarLysandre <lysandre.debut@reseau.eseo.fr>
parent c6d66484
...@@ -223,6 +223,8 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. ...@@ -223,6 +223,8 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team. 1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer. 1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. 1. **[MBart-50](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
1. **[Megatron-BERT](https://huggingface.co/transformers/model_doc/megatron_bert.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[Megatron-GPT2](https://huggingface.co/transformers/model_doc/megatron_gpt2.html)** (from NVIDIA) released with the paper [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/abs/1909.08053) by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. 1. **[MPNet](https://huggingface.co/transformers/model_doc/mpnet.html)** (from Microsoft Research) released with the paper [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. 1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu. 1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
......
...@@ -178,58 +178,64 @@ and conversion utilities for the following models: ...@@ -178,58 +178,64 @@ and conversion utilities for the following models:
32. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible 32. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
Multilingual Pretraining and Finetuning <https://arxiv.org/abs/2008.00401>`__ by Yuqing Tang, Chau Tran, Xian Li, Multilingual Pretraining and Finetuning <https://arxiv.org/abs/2008.00401>`__ by Yuqing Tang, Chau Tran, Xian Li,
Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
33. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted 33. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
34. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
35. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
Pre-training for Language Understanding <https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin, Pre-training for Language Understanding <https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin,
Jianfeng Lu, Tie-Yan Liu. Jianfeng Lu, Tie-Yan Liu.
34. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained 36. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel. Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
35. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted 37. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao, Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
Mohammad Saleh and Peter J. Liu. Mohammad Saleh and Peter J. Liu.
36. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting 38. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi, Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
37. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient 39. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
38. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT 40. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
39. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper 41. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
`fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`__ by Changhan Wang, Yun `fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`__ by Changhan Wang, Yun
Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino. Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
40. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP 42. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
Krishna, and Kurt W. Keutzer. Krishna, and Kurt W. Keutzer.
41. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a 43. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu. Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
42. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via 44. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
Pre-training <https://arxiv.org/abs/2004.02349>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Pre-training <https://arxiv.org/abs/2004.02349>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller,
Francesco Piccinno and Julian Martin Eisenschlos. Francesco Piccinno and Julian Martin Eisenschlos.
43. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL: 45. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*, Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
44. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16 46. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ by Alexey Dosovitskiy, Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ by Alexey Dosovitskiy,
Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
45. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for 47. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry
Zhou, Abdelrahman Mohamed, Michael Auli. Zhou, Abdelrahman Mohamed, Michael Auli.
46. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model 48. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau. Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
47. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet: 49. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou. Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
48. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised 50. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer and Veselin Stoyanov. Zettlemoyer and Veselin Stoyanov.
49. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive 51. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
50. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised 52. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
Cross-Lingual Representation Learning For Speech Recognition <https://arxiv.org/abs/2006.13979>`__ by Alexis Cross-Lingual Representation Learning For Speech Recognition <https://arxiv.org/abs/2006.13979>`__ by Alexis
Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli. Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
...@@ -304,6 +310,8 @@ TensorFlow and/or Flax. ...@@ -304,6 +310,8 @@ TensorFlow and/or Flax.
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Marian | ✅ | ❌ | ✅ | ✅ | ❌ | | Marian | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| MegatronBert | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ | | MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+ +-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ | | OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
...@@ -449,6 +457,8 @@ TensorFlow and/or Flax. ...@@ -449,6 +457,8 @@ TensorFlow and/or Flax.
model_doc/marian model_doc/marian
model_doc/m2m_100 model_doc/m2m_100
model_doc/mbart model_doc/mbart
model_doc/megatron_bert
model_doc/megatron_gpt2
model_doc/mobilebert model_doc/mobilebert
model_doc/mpnet model_doc/mpnet
model_doc/mt5 model_doc/mt5
......
..
Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
MegatronBERT
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MegatronBERT model was proposed in `Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
*Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain
15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline
that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance
the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9
billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in
BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we
achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA
accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy
of 89.4%).*
Tips:
We have provided pretrained `BERT-345M <https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m>`__ checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first `sign up <https://ngc.nvidia.com/signup>`__ for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the `NGC documentation
<https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1>`__.
Alternatively, you can directly download the checkpoints using:
BERT-345M-uncased::
.. code-block:: bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip
-O megatron_bert_345m_v0_1_uncased.zip
BERT-345M-cased::
.. code-block:: bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O
megatron_bert_345m_v0_1_cased.zip
Once you have obtained the checkpoints from NVIDIA GPU Cloud (NGC), you have to convert them to a format that will
easily be loaded by Hugging Face Transformers and our port of the BERT code.
The following commands allow you to do the conversion. We assume that the folder ``models/megatron_bert`` contains
``megatron_bert_345m_v0_1_{cased, uncased}.zip`` and that the commands are run from inside that folder::
.. code-block:: bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_uncased.zip
.. code-block:: bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_bert/convert_megatron_bert_checkpoint.py megatron_bert_345m_v0_1_cased.zip
The original code can be found `here <https://github.com/NVIDIA/Megatron-LM>`__. That repository contains a multi-GPU
and multi-node implementation of the Megatron Language models. In particular, it contains a hybrid model parallel
approach using "tensor parallel" and "pipeline parallel" techniques.
MegatronBertConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertConfig
:members:
MegatronBertModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertModel
:members: forward
MegatronBertForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForMaskedLM
:members: forward
MegatronBertForCausalLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForCausalLM
:members: forward
MegatronBertForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForNextSentencePrediction
:members: forward
MegatronBertForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForPreTraining
:members: forward
MegatronBertForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForSequenceClassification
:members: forward
MegatronBertForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForMultipleChoice
:members: forward
MegatronBertForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForTokenClassification
:members: forward
MegatronBertForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.MegatronBertForQuestionAnswering
:members: forward
..
Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
MegatronGPT2
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The MegatronGPT2 model was proposed in `Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper and Bryan Catanzaro.
The abstract from the paper is the following:
*Recent work in language modeling demonstrates that training large transformer models advances the state of the art in
Natural Language Processing applications. However, very large models can be quite difficult to train due to memory
constraints. In this work, we present our techniques for training very large transformer models and implement a simple,
efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our
approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We
illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain
15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline
that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance
the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9
billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in
BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we
achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA
accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy
of 89.4%).*
Tips:
We have provided pretrained `GPT2-345M <https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m>`__ checkpoints
for use to evaluate or finetuning downstream tasks.
To access these checkpoints, first `sign up <https://ngc.nvidia.com/signup>`__ for and setup the NVIDIA GPU Cloud (NGC)
Registry CLI. Further documentation for downloading models can be found in the `NGC documentation
<https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1>`__.
Alternatively, you can directly download the checkpoints using::
.. code-block:: bash
wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O
megatron_gpt2_345m_v0_0.zip
Once you have obtained the checkpoint from NVIDIA GPU Cloud (NGC), you have to convert it to a format that will easily
be loaded by Hugging Face Transformers GPT2 implementation.
The following command allows you to do the conversion. We assume that the folder ``models/megatron_gpt2`` contains
``megatron_gpt2_345m_v0_0.zip`` and that the command is run from that folder::
.. code-block:: bash
python3 $PATH_TO_TRANSFORMERS/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py megatron_gpt2_345m_v0_0.zip
The original code can be found `here <https://github.com/NVIDIA/Megatron-LM>`__. That repository contains a multi-GPU
and multi-node implementation of the Megatron Language models. In particular, it contains a hybrid model parallel
approach using "tensor parallel" and "pipeline parallel" techniques.
...@@ -191,6 +191,7 @@ _import_structure = { ...@@ -191,6 +191,7 @@ _import_structure = {
"models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"], "models.m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config"],
"models.marian": ["MarianConfig"], "models.marian": ["MarianConfig"],
"models.mbart": ["MBartConfig"], "models.mbart": ["MBartConfig"],
"models.megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
"models.mmbt": ["MMBTConfig"], "models.mmbt": ["MMBTConfig"],
"models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"], "models.mobilebert": ["MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertTokenizer"],
"models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"], "models.mpnet": ["MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "MPNetConfig", "MPNetTokenizer"],
...@@ -765,6 +766,20 @@ if is_torch_available(): ...@@ -765,6 +766,20 @@ if is_torch_available():
"MBartModel", "MBartModel",
] ]
) )
_import_structure["models.megatron_bert"].extend(
[
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
]
)
_import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]) _import_structure["models.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"])
_import_structure["models.mobilebert"].extend( _import_structure["models.mobilebert"].extend(
[ [
...@@ -1514,6 +1529,7 @@ if TYPE_CHECKING: ...@@ -1514,6 +1529,7 @@ if TYPE_CHECKING:
from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config from .models.m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
from .models.marian import MarianConfig from .models.marian import MarianConfig
from .models.mbart import MBartConfig from .models.mbart import MBartConfig
from .models.megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
from .models.mmbt import MMBTConfig from .models.mmbt import MMBTConfig
from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer from .models.mobilebert import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertTokenizer
from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer from .models.mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig, MPNetTokenizer
...@@ -1999,6 +2015,18 @@ if TYPE_CHECKING: ...@@ -1999,6 +2015,18 @@ if TYPE_CHECKING:
MBartForSequenceClassification, MBartForSequenceClassification,
MBartModel, MBartModel,
) )
from .models.megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings from .models.mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
from .models.mobilebert import ( from .models.mobilebert import (
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
......
...@@ -50,6 +50,7 @@ from . import ( ...@@ -50,6 +50,7 @@ from . import (
m2m_100, m2m_100,
marian, marian,
mbart, mbart,
megatron_bert,
mmbt, mmbt,
mobilebert, mobilebert,
mpnet, mpnet,
......
...@@ -50,6 +50,7 @@ from ..lxmert.configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ...@@ -50,6 +50,7 @@ from ..lxmert.configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
from ..m2m_100.configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config from ..m2m_100.configuration_m2m_100 import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, M2M100Config
from ..marian.configuration_marian import MarianConfig from ..marian.configuration_marian import MarianConfig
from ..mbart.configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig from ..mbart.configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig
from ..megatron_bert.configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
from ..mobilebert.configuration_mobilebert import MobileBertConfig from ..mobilebert.configuration_mobilebert import MobileBertConfig
from ..mpnet.configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig from ..mpnet.configuration_mpnet import MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP, MPNetConfig
from ..mt5.configuration_mt5 import MT5Config from ..mt5.configuration_mt5 import MT5Config
...@@ -85,6 +86,7 @@ ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict( ...@@ -85,6 +86,7 @@ ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
# Add archive maps here # Add archive maps here
GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP,
BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP, BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP,
MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
...@@ -155,6 +157,7 @@ CONFIG_MAPPING = OrderedDict( ...@@ -155,6 +157,7 @@ CONFIG_MAPPING = OrderedDict(
("pegasus", PegasusConfig), ("pegasus", PegasusConfig),
("marian", MarianConfig), ("marian", MarianConfig),
("mbart", MBartConfig), ("mbart", MBartConfig),
("megatron_bert", MegatronBertConfig),
("mpnet", MPNetConfig), ("mpnet", MPNetConfig),
("bart", BartConfig), ("bart", BartConfig),
("blenderbot", BlenderbotConfig), ("blenderbot", BlenderbotConfig),
...@@ -211,6 +214,7 @@ MODEL_NAMES_MAPPING = OrderedDict( ...@@ -211,6 +214,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("blenderbot", "Blenderbot"), ("blenderbot", "Blenderbot"),
("marian", "Marian"), ("marian", "Marian"),
("mbart", "mBART"), ("mbart", "mBART"),
("megatron_bert", "MegatronBert"),
("bart", "BART"), ("bart", "BART"),
("reformer", "Reformer"), ("reformer", "Reformer"),
("longformer", "Longformer"), ("longformer", "Longformer"),
......
...@@ -174,6 +174,17 @@ from ..mbart.modeling_mbart import ( ...@@ -174,6 +174,17 @@ from ..mbart.modeling_mbart import (
MBartForSequenceClassification, MBartForSequenceClassification,
MBartModel, MBartModel,
) )
from ..megatron_bert.modeling_megatron_bert import (
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
from ..mobilebert.modeling_mobilebert import ( from ..mobilebert.modeling_mobilebert import (
MobileBertForMaskedLM, MobileBertForMaskedLM,
MobileBertForMultipleChoice, MobileBertForMultipleChoice,
...@@ -298,6 +309,7 @@ from .configuration_auto import ( ...@@ -298,6 +309,7 @@ from .configuration_auto import (
M2M100Config, M2M100Config,
MarianConfig, MarianConfig,
MBartConfig, MBartConfig,
MegatronBertConfig,
MobileBertConfig, MobileBertConfig,
MPNetConfig, MPNetConfig,
MT5Config, MT5Config,
...@@ -355,6 +367,7 @@ MODEL_MAPPING = OrderedDict( ...@@ -355,6 +367,7 @@ MODEL_MAPPING = OrderedDict(
(BertConfig, BertModel), (BertConfig, BertModel),
(OpenAIGPTConfig, OpenAIGPTModel), (OpenAIGPTConfig, OpenAIGPTModel),
(GPT2Config, GPT2Model), (GPT2Config, GPT2Model),
(MegatronBertConfig, MegatronBertModel),
(MobileBertConfig, MobileBertModel), (MobileBertConfig, MobileBertModel),
(TransfoXLConfig, TransfoXLModel), (TransfoXLConfig, TransfoXLModel),
(XLNetConfig, XLNetModel), (XLNetConfig, XLNetModel),
...@@ -398,6 +411,7 @@ MODEL_FOR_PRETRAINING_MAPPING = OrderedDict( ...@@ -398,6 +411,7 @@ MODEL_FOR_PRETRAINING_MAPPING = OrderedDict(
(BigBirdConfig, BigBirdForPreTraining), (BigBirdConfig, BigBirdForPreTraining),
(OpenAIGPTConfig, OpenAIGPTLMHeadModel), (OpenAIGPTConfig, OpenAIGPTLMHeadModel),
(GPT2Config, GPT2LMHeadModel), (GPT2Config, GPT2LMHeadModel),
(MegatronBertConfig, MegatronBertForPreTraining),
(MobileBertConfig, MobileBertForPreTraining), (MobileBertConfig, MobileBertForPreTraining),
(TransfoXLConfig, TransfoXLLMHeadModel), (TransfoXLConfig, TransfoXLLMHeadModel),
(XLNetConfig, XLNetLMHeadModel), (XLNetConfig, XLNetLMHeadModel),
...@@ -441,6 +455,7 @@ MODEL_WITH_LM_HEAD_MAPPING = OrderedDict( ...@@ -441,6 +455,7 @@ MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
(BertConfig, BertForMaskedLM), (BertConfig, BertForMaskedLM),
(OpenAIGPTConfig, OpenAIGPTLMHeadModel), (OpenAIGPTConfig, OpenAIGPTLMHeadModel),
(GPT2Config, GPT2LMHeadModel), (GPT2Config, GPT2LMHeadModel),
(MegatronBertConfig, MegatronBertForMaskedLM),
(MobileBertConfig, MobileBertForMaskedLM), (MobileBertConfig, MobileBertForMaskedLM),
(TransfoXLConfig, TransfoXLLMHeadModel), (TransfoXLConfig, TransfoXLLMHeadModel),
(XLNetConfig, XLNetLMHeadModel), (XLNetConfig, XLNetLMHeadModel),
...@@ -456,6 +471,7 @@ MODEL_WITH_LM_HEAD_MAPPING = OrderedDict( ...@@ -456,6 +471,7 @@ MODEL_WITH_LM_HEAD_MAPPING = OrderedDict(
(DebertaConfig, DebertaForMaskedLM), (DebertaConfig, DebertaForMaskedLM),
(DebertaV2Config, DebertaV2ForMaskedLM), (DebertaV2Config, DebertaV2ForMaskedLM),
(IBertConfig, IBertForMaskedLM), (IBertConfig, IBertForMaskedLM),
(MegatronBertConfig, MegatronBertForCausalLM),
] ]
) )
...@@ -487,6 +503,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict( ...@@ -487,6 +503,7 @@ MODEL_FOR_CAUSAL_LM_MAPPING = OrderedDict(
(MarianConfig, MarianForCausalLM), (MarianConfig, MarianForCausalLM),
(BlenderbotConfig, BlenderbotForCausalLM), (BlenderbotConfig, BlenderbotForCausalLM),
(BlenderbotSmallConfig, BlenderbotSmallForCausalLM), (BlenderbotSmallConfig, BlenderbotSmallForCausalLM),
(MegatronBertConfig, MegatronBertForCausalLM),
] ]
) )
...@@ -514,6 +531,7 @@ MODEL_FOR_MASKED_LM_MAPPING = OrderedDict( ...@@ -514,6 +531,7 @@ MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
(RobertaConfig, RobertaForMaskedLM), (RobertaConfig, RobertaForMaskedLM),
(SqueezeBertConfig, SqueezeBertForMaskedLM), (SqueezeBertConfig, SqueezeBertForMaskedLM),
(BertConfig, BertForMaskedLM), (BertConfig, BertForMaskedLM),
(MegatronBertConfig, MegatronBertForMaskedLM),
(MobileBertConfig, MobileBertForMaskedLM), (MobileBertConfig, MobileBertForMaskedLM),
(FlaubertConfig, FlaubertWithLMHeadModel), (FlaubertConfig, FlaubertWithLMHeadModel),
(XLMConfig, XLMWithLMHeadModel), (XLMConfig, XLMWithLMHeadModel),
...@@ -566,6 +584,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict( ...@@ -566,6 +584,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = OrderedDict(
(LayoutLMConfig, LayoutLMForSequenceClassification), (LayoutLMConfig, LayoutLMForSequenceClassification),
(BertConfig, BertForSequenceClassification), (BertConfig, BertForSequenceClassification),
(XLNetConfig, XLNetForSequenceClassification), (XLNetConfig, XLNetForSequenceClassification),
(MegatronBertConfig, MegatronBertForSequenceClassification),
(MobileBertConfig, MobileBertForSequenceClassification), (MobileBertConfig, MobileBertForSequenceClassification),
(FlaubertConfig, FlaubertForSequenceClassification), (FlaubertConfig, FlaubertForSequenceClassification),
(XLMConfig, XLMForSequenceClassification), (XLMConfig, XLMForSequenceClassification),
...@@ -602,6 +621,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict( ...@@ -602,6 +621,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING = OrderedDict(
(BertConfig, BertForQuestionAnswering), (BertConfig, BertForQuestionAnswering),
(XLNetConfig, XLNetForQuestionAnsweringSimple), (XLNetConfig, XLNetForQuestionAnsweringSimple),
(FlaubertConfig, FlaubertForQuestionAnsweringSimple), (FlaubertConfig, FlaubertForQuestionAnsweringSimple),
(MegatronBertConfig, MegatronBertForQuestionAnswering),
(MobileBertConfig, MobileBertForQuestionAnswering), (MobileBertConfig, MobileBertForQuestionAnswering),
(XLMConfig, XLMForQuestionAnsweringSimple), (XLMConfig, XLMForQuestionAnsweringSimple),
(ElectraConfig, ElectraForQuestionAnswering), (ElectraConfig, ElectraForQuestionAnswering),
...@@ -637,6 +657,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict( ...@@ -637,6 +657,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = OrderedDict(
(RobertaConfig, RobertaForTokenClassification), (RobertaConfig, RobertaForTokenClassification),
(SqueezeBertConfig, SqueezeBertForTokenClassification), (SqueezeBertConfig, SqueezeBertForTokenClassification),
(BertConfig, BertForTokenClassification), (BertConfig, BertForTokenClassification),
(MegatronBertConfig, MegatronBertForTokenClassification),
(MobileBertConfig, MobileBertForTokenClassification), (MobileBertConfig, MobileBertForTokenClassification),
(XLNetConfig, XLNetForTokenClassification), (XLNetConfig, XLNetForTokenClassification),
(AlbertConfig, AlbertForTokenClassification), (AlbertConfig, AlbertForTokenClassification),
...@@ -663,6 +684,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict( ...@@ -663,6 +684,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict(
(SqueezeBertConfig, SqueezeBertForMultipleChoice), (SqueezeBertConfig, SqueezeBertForMultipleChoice),
(BertConfig, BertForMultipleChoice), (BertConfig, BertForMultipleChoice),
(DistilBertConfig, DistilBertForMultipleChoice), (DistilBertConfig, DistilBertForMultipleChoice),
(MegatronBertConfig, MegatronBertForMultipleChoice),
(MobileBertConfig, MobileBertForMultipleChoice), (MobileBertConfig, MobileBertForMultipleChoice),
(XLNetConfig, XLNetForMultipleChoice), (XLNetConfig, XLNetForMultipleChoice),
(AlbertConfig, AlbertForMultipleChoice), (AlbertConfig, AlbertForMultipleChoice),
...@@ -677,6 +699,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict( ...@@ -677,6 +699,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING = OrderedDict(
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = OrderedDict( MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = OrderedDict(
[ [
(BertConfig, BertForNextSentencePrediction), (BertConfig, BertForNextSentencePrediction),
(MegatronBertConfig, MegatronBertForNextSentencePrediction),
(MobileBertConfig, MobileBertForNextSentencePrediction), (MobileBertConfig, MobileBertForNextSentencePrediction),
] ]
) )
......
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _BaseLazyModule, is_torch_available
_import_structure = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
if is_torch_available():
_import_structure["modeling_megatron_bert"] = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
if is_torch_available():
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
else:
import importlib
import os
import sys
class _LazyModule(_BaseLazyModule):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
__file__ = globals()["__file__"]
__path__ = [os.path.dirname(__file__)]
def _get_module(self, module_name: str):
return importlib.import_module("." + module_name, self.__name__)
sys.modules[__name__] = _LazyModule(__name__, _import_structure)
# coding=utf-8
# Copyright 2021- NVIDIA Corporation and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MEGATRON_BERT model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class MegatronBertConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.MegatronBertModel`. It is
used to instantiate a MEGATRON_BERT model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the MEGATRON_BERT
`megatron-bert-uncased-345m <https://huggingface.co/nvidia/megatron-bert-uncased-345m>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 29056):
Vocabulary size of the MEGATRON_BERT model. Defines the number of different tokens that can be represented
by the :obj:`inputs_ids` passed when calling :class:`~transformers.MegatronBertModel`.
hidden_size (:obj:`int`, `optional`, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (:obj:`int`, `optional`, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 2):
The vocabulary size of the :obj:`token_type_ids` passed when calling
:class:`~transformers.MegatronBertModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"absolute"`):
Type of position embedding. Choose one of :obj:`"absolute"`, :obj:`"relative_key"`,
:obj:`"relative_key_query"`. For positional embeddings use :obj:`"absolute"`. For more information on
:obj:`"relative_key"`, please refer to `Self-Attention with Relative Position Representations (Shaw et al.)
<https://arxiv.org/abs/1803.02155>`__. For more information on :obj:`"relative_key_query"`, please refer to
`Method 4` in `Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)
<https://arxiv.org/abs/2009.13658>`__.
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if ``config.is_decoder=True``.
Examples::
>>> from transformers import MegatronBertModel, MegatronBertConfig
>>> # Initializing a MEGATRON_BERT bert-base-uncased style configuration
>>> configuration = MegatronBertConfig()
>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = MegatronBertModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "megatron-bert"
def __init__(
self,
vocab_size=29056,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
intermediate_size=4096,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
gradient_checkpointing=False,
position_embedding_type="absolute",
use_cache=True,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.gradient_checkpointing = gradient_checkpointing
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
####################################################################################################
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
import argparse
import json
import os
import re
import zipfile
import torch
####################################################################################################
def recursive_print(name, val, spaces=0):
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
####################################################################################################
def convert_megatron_checkpoint(args, input_state_dict):
# The converted output model.
output_state_dict = {}
# The model.
model = input_state_dict["model"]
# The language model.
lm = model["language_model"]
# The embeddings.
embeddings = lm["embedding"]
# The word embeddings.
word_embeddings = embeddings["word_embeddings"]["weight"]
# Store the word embeddings.
output_state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings
# The position embeddings.
pos_embeddings = embeddings["position_embeddings"]["weight"]
# Trained for 512 x 1024.
assert pos_embeddings.size(0) == 512 and pos_embeddings.size(1) == 1024
# Store the position embeddings.
output_state_dict["bert.embeddings.position_embeddings.weight"] = pos_embeddings
# The token-type embeddings.
tokentype_embeddings = embeddings["tokentype_embeddings"]["weight"]
# Store the position embeddings.
output_state_dict["bert.embeddings.token_type_embeddings.weight"] = tokentype_embeddings
# The transformer.
transformer = lm["transformer"]
# The regex to extract layer names.
layer_re = re.compile("layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# The simple map of names for "automated" rules.
megatron_to_transformers = {
"attention.dense": ".attention.output.dense.",
"mlp.dense_h_to_4h": ".intermediate.dense.",
"mlp.dense_4h_to_h": ".output.dense.",
}
# Keep track of the attention/query/value tensor.
attention_qkv_weight = None
# Extract the layers.
for key, val in transformer.items():
# Match the name.
m = layer_re.match(key)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
layer_idx = int(m.group(1))
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
# The name of the layer.
layer_name = f"bert.encoder.layer.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm"):
ln_name = "attention.ln" if op_name.startswith("input") else "ln"
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val
# Transpose the QKV matrix.
elif op_name == "attention.query_key_value" and weight_or_bias == "weight":
# Make sure the QKV pointer is nil.
assert attention_qkv_weight is None, ""
# Store the tensor as we need the bias as well to interleave QKV and biases.
attention_qkv_weight = val
# Transpose the bias.
elif op_name == "attention.query_key_value" and weight_or_bias == "bias":
# Make sure we read the weight tensor.
assert attention_qkv_weight is not None, ""
# Split the QKV matrix into Q, K and V. Megatron stores Q,K,V interleaved.
q = attention_qkv_weight[0 * 1024 : 1 * 1024, :]
k = attention_qkv_weight[1 * 1024 : 2 * 1024, :]
v = attention_qkv_weight[2 * 1024 : 3 * 1024, :]
# Split the bias.
q_bias = val[0 * 1024 : 1 * 1024]
k_bias = val[1 * 1024 : 2 * 1024]
v_bias = val[2 * 1024 : 3 * 1024]
# Store.
output_state_dict[f"{layer_name}.attention.self.query.weight"] = q
output_state_dict[f"{layer_name}.attention.self.query.bias"] = q_bias
output_state_dict[f"{layer_name}.attention.self.key.weight"] = k
output_state_dict[f"{layer_name}.attention.self.key.bias"] = k_bias
output_state_dict[f"{layer_name}.attention.self.value.weight"] = v
output_state_dict[f"{layer_name}.attention.self.value.bias"] = v_bias
# Clear the stored tensor.
attention_qkv_weight = None
# Copy weights and biases as is.
elif weight_or_bias in ["weight", "bias"]:
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + weight_or_bias] = val
# The final layernorm.
output_state_dict["bert.encoder.ln.weight"] = transformer["final_layernorm.weight"]
output_state_dict["bert.encoder.ln.bias"] = transformer["final_layernorm.bias"]
# The config.
output_config = {
"vocab_size": word_embeddings.size(0),
"hidden_size": 1024,
"num_hidden_layers": 24,
"num_attention_heads": 16,
"hidden_act": "gelu_new",
"intermediate_size": 4096,
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 512,
"type_vocab_size": 2,
"initializer_range": 0.2,
"layer_norm_eps": 1e-12,
"gradient_checkpointing": False,
"position_embedding_type": "absolute",
"use_cache": False,
}
# The pooler.
pooler = lm["pooler"]
# Store the matrix and the bias.
output_state_dict["bert.pooler.dense.weight"] = pooler["dense.weight"]
output_state_dict["bert.pooler.dense.bias"] = pooler["dense.bias"]
# The LM head from Megatron (for RACE).
lm_head = model["lm_head"]
# The transform matrix.
output_state_dict["cls.predictions.transform.dense.weight"] = lm_head["dense.weight"]
output_state_dict["cls.predictions.transform.dense.bias"] = lm_head["dense.bias"]
# The transform LN.
output_state_dict["cls.predictions.transform.LayerNorm.weight"] = lm_head["layernorm.weight"]
output_state_dict["cls.predictions.transform.LayerNorm.bias"] = lm_head["layernorm.bias"]
# For the decoder, we replicate the weights.
output_state_dict["cls.predictions.decoder.weight"] = word_embeddings
output_state_dict["cls.predictions.bias"] = lm_head["bias"]
# The classifier from Megatron (for MLNI).
binary_head = model["binary_head"]
# Store the classifier.
output_state_dict["cls.seq_relationship.weight"] = binary_head["weight"]
output_state_dict["cls.seq_relationship.bias"] = binary_head["bias"]
# It should be done!
return output_state_dict, output_config
####################################################################################################
def main():
# Create the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure", action="store_true")
parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint")
args = parser.parse_args()
# Extract the basename.
basename = os.path.dirname(args.path_to_checkpoint)
# Load the model.
print(f'Extracting PyTorch state dictionary from "{args.path_to_checkpoint}"')
with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict:
input_state_dict = torch.load(pytorch_dict, map_location="cpu")
# Convert.
print("Converting")
output_state_dict, output_config = convert_megatron_checkpoint(args, input_state_dict)
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, output_state_dict)
# Store the config to file.
output_config_file = os.path.join(basename, "config.json")
print(f'Saving config to "{output_config_file}"')
with open(output_config_file, "w") as f:
json.dump(output_config, f)
# Store the state_dict to file.
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
print(f'Saving checkpoint to "{output_checkpoint_file}"')
torch.save(output_state_dict, output_checkpoint_file)
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MegatronBERT model. """
import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...file_utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...utils import logging
from .configuration_megatron_bert import MegatronBertConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MegatronBertConfig"
_TOKENIZER_FOR_DOC = "BertTokenizer"
_CHECKPOINT_FOR_DOC = "nvidia/megatron-bert-cased-345m"
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"nvidia/megatron-bert-cased-345m",
# See all MegatronBERT models at https://huggingface.co/models?filter=megatron_bert
]
def load_tf_weights_in_megatron_bert(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
class MegatronBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
# In Megatron, layer-norm is applied after the 1st dropout.
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
# Megatron BERT moves that layer norm after the drop-out (and to each layer).
# embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->MegatronBert
class MegatronBertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in MegatronBertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Based transformers.models.bert.modeling_bert.BertSelfOutput. Moved LayerNorm to MegatronBertAttention below.
class MegatronBertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, residual):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return residual + hidden_states
# Based transformers.models.bert.modeling_bert.BertAttention. Added LayerNorm.
class MegatronBertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.self = MegatronBertSelfAttention(config)
self.output = MegatronBertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
ln_outputs = self.ln(hidden_states)
self_outputs = self.self(
ln_outputs,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->MegatronBert
class MegatronBertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Based on transformers.models.bert.modeling_bert.BertOutput. Moved LayerNorm to MegatronBertLayer below.
class MegatronBertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return input_tensor + hidden_states
# Based on transformers.models.bert.modeling_bert.BertLayer. Added LayerNorm.
class MegatronBertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = MegatronBertAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
self.crossattention = MegatronBertAttention(config)
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.intermediate = MegatronBertIntermediate(config)
self.output = MegatronBertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
assert hasattr(
self, "crossattention"
), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
ln_output = self.ln(attention_output)
intermediate_output = self.intermediate(ln_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class MegatronBertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([MegatronBertLayer(config) for _ in range(config.num_hidden_layers)])
# The final layer norm. We removed the 1st LN, moved LN to each hidden layer and this one
# is simply the final LN (Transformer's BERT has it attached to each hidden layer).
self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if getattr(self.config, "gradient_checkpointing", False) and self.training:
if use_cache:
logger.warn(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
# Because we moved the layer-norm at the end of the hidden layer, we have non-normali-
# zed data here. If that's really needed, we must apply LN to match Transformer's BERT.
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
# Finalize the hidden states.
hidden_states = self.ln(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->MegatronBert
class MegatronBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->MegatronBert
class MegatronBertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->MegatronBert
class MegatronBertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = MegatronBertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->MegatronBert
class MegatronBertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = MegatronBertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->MegatronBert
class MegatronBertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->MegatronBert
class MegatronBertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = MegatronBertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class MegatronBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MegatronBertConfig
load_tf_weights = load_tf_weights_in_megatron_bert
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@dataclass
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->MegatronBert
class MegatronBertForPreTrainingOutput(ModelOutput):
"""
Output type of :class:`~transformers.MegatronBertForPreTraining`.
Args:
loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
seq_relationship_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
MEGATRON_BERT_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.MegatronBertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
MEGATRON_BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
1]``:
- 0 corresponds to a `sentence A` token,
- 1 corresponds to a `sentence B` token.
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MegatronBert Model transformer outputting raw hidden-states without any specific head on top.",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertModel(MegatronBertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration
set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = MegatronBertEmbeddings(config)
self.encoder = MegatronBertEncoder(config)
self.pooler = MegatronBertPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""
MegatronBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
`next sentence prediction (classification)` head.
""",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForPreTraining(MegatronBertPreTrainedModel):
def __init__(self, config, add_binary_head=True):
super().__init__(config)
self.bert = MegatronBertModel(config)
self.cls = MegatronBertPreTrainingHeads(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=MegatronBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
next_sentence_label=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example::
>>> from transformers import BertTokenizer, MegatronBertForPreTraining
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> model = MegatronBertForPreTraining.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return MegatronBertForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""MegatronBert Model with a `language modeling` head on top for CLM fine-tuning. """,
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForCausalLM(MegatronBertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `MegatronBertForCausalLM` as a standalone, add `is_decoder=True.`")
self.bert = MegatronBertModel(config, add_pooling_layer=False)
self.cls = MegatronBertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
use_cache (:obj:`bool`, `optional`):
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
decoding (see :obj:`past_key_values`).
Returns:
Example::
>>> from transformers import BertTokenizer, MegatronBertForCausalLM, MegatronBertConfig
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> model = MegatronBertLMHeadModel.from_pretrained('nvidia/megatron-bert-cased-345m', is_decoder=True)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
def _reorder_cache(self, past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
return reordered_past
@add_start_docstrings("""MegatronBert Model with a `language modeling` head on top. """, MEGATRON_BERT_START_DOCSTRING)
class MegatronBertForMaskedLM(MegatronBertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler", r"seq_relationship"]
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `MegatronBertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.bert = MegatronBertModel(config, add_pooling_layer=False)
self.cls = MegatronBertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
(masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""MegatronBert Model with a `next sentence prediction (classification)` head on top. """,
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForNextSentencePrediction(MegatronBertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"predictions"]
def __init__(self, config):
super().__init__(config)
self.bert = MegatronBertModel(config)
self.cls = MegatronBertOnlyNSPHead(config)
self.init_weights()
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see ``input_ids`` docstring). Indices should be in ``[0, 1]``:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example::
>>> from transformers import BertTokenizer, MegatronBertForNextSentencePrediction
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> model = MegatronBertForNextSentencePrediction.from_pretrained('nvidia/megatron-bert-cased-345m')
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MegatronBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForSequenceClassification(MegatronBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MegatronBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MegatronBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output
and a softmax) e.g. for RocStories/SWAG tasks.
""",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForMultipleChoice(MegatronBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = MegatronBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.init_weights()
@add_start_docstrings_to_model_forward(
MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See
:obj:`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MegatronBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForTokenClassification(MegatronBertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MegatronBertModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels -
1]``.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MegatronBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MEGATRON_BERT_START_DOCSTRING,
)
class MegatronBertForQuestionAnswering(MegatronBertPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = MegatronBertModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(MEGATRON_BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
tokenizer_class=_TOKENIZER_FOR_DOC,
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
sequence are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the
sequence are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
####################################################################################################
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
import argparse
import json
import os
import re
import zipfile
import torch
####################################################################################################
def recursive_print(name, val, spaces=0):
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
####################################################################################################
def convert_megatron_checkpoint(args, input_state_dict):
# The converted output model.
output_state_dict = {}
# The number of heads.
heads = 16
# The hidden_size per head.
hidden_size_per_head = 64
# The model.
model = input_state_dict["model"]
# The language model.
lm = model["language_model"]
# The embeddings.
embeddings = lm["embedding"]
# The word embeddings.
word_embeddings = embeddings["word_embeddings"]["weight"]
# Truncate the embedding table to 50257 rows.
word_embeddings = word_embeddings[:50257, :]
# Truncate the embedding table to 50257 rows.
output_state_dict["transformer.wte.weight"] = word_embeddings
# The position embeddings.
pos_embeddings = embeddings["position_embeddings"]["weight"]
# Read the hidden dimension.
hidden_size = pos_embeddings.size(0)
# DEBUG.
assert hidden_size == heads * hidden_size_per_head
# Store the position embeddings.
output_state_dict["transformer.wpe.weight"] = pos_embeddings
# The transformer.
transformer = lm["transformer"]
# The regex to extract layer names.
layer_re = re.compile("layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# The simple map of names for "automated" rules.
megatron_to_transformers = {
"attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
m = layer_re.match(key)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
layer_idx = int(m.group(1))
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
# The name of the layer.
layer_name = f"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm"):
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = val
# Transpose the QKV matrix.
elif op_name == "attention.query_key_value" and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
zeros = torch.ones(1, 1, hidden_size, hidden_size)
output_state_dict[layer_name + ".attn.bias"] = zeros
# Insert a "dummy" tensor for masked_bias.
masked_bias = torch.tensor(-1e4)
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
out_val = val.transpose(0, 1)
# Store.
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
# Transpose the bias.
elif op_name == "attention.query_key_value" and weight_or_bias == "bias":
# Store. No change of shape.
output_state_dict[layer_name + ".attn.c_attn.bias"] = val
# Transpose the weights.
elif weight_or_bias == "weight":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "weight"] = val.transpose(0, 1)
# Copy the bias.
elif weight_or_bias == "bias":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "bias"] = val
# The final layernorm.
output_state_dict["transformer.ln_f.weight"] = transformer["final_layernorm.weight"]
output_state_dict["transformer.ln_f.bias"] = transformer["final_layernorm.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
output_state_dict["lm_head.weight"] = word_embeddings
# The config.
output_config = {
"activation_function": "gelu_new",
"architectures": ["GPT2LMHeadModel"],
"attn_pdrop": 0.1,
"bos_token_id": 50256,
"embd_pdrop": 0.1,
"eos_token_id": 50256,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"model_type": "gpt2",
"n_ctx": 1024,
"n_embd": 1024,
"n_head": 16,
"n_layer": 24,
"n_positions": 1024,
"resid_pdrop": 0.1,
"summary_activation": None,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": True,
"summary_type": "cls_index",
"summary_use_proj": True,
"vocab_size": 50257,
}
# It should be done!
return output_state_dict, output_config
####################################################################################################
def main():
# Create the argument parser.
parser = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure", action="store_true")
parser.add_argument("path_to_checkpoint", type=str, help="Path to the ZIP file containing the checkpoint")
args = parser.parse_args()
# Extract the basename.
basename = os.path.dirname(args.path_to_checkpoint)
# Load the model.
print('Extracting PyTorch state dictionary from "{}"'.format(args.path_to_checkpoint))
with zipfile.ZipFile(args.path_to_checkpoint, "r") as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt") as pytorch_dict:
input_state_dict = torch.load(pytorch_dict, map_location="cpu")
# Convert.
print("Converting")
output_state_dict, output_config = convert_megatron_checkpoint(args, input_state_dict)
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, output_state_dict)
# Store the config to file.
output_config_file = os.path.join(basename, "config.json")
print(f'Saving config to "{output_config_file}"')
with open(output_config_file, "w") as f:
json.dump(output_config, f)
# Store the state_dict to file.
output_checkpoint_file = os.path.join(basename, "pytorch_model.bin")
print(f'Saving checkpoint to "{output_checkpoint_file}"')
torch.save(output_state_dict, output_checkpoint_file)
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
...@@ -1840,6 +1840,78 @@ class MBartModel: ...@@ -1840,6 +1840,78 @@ class MBartModel:
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None
class MegatronBertForCausalLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForMaskedLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForPreTraining:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertForTokenClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MegatronBertModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["torch"])
class MMBTForClassification: class MMBTForClassification:
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"]) requires_backends(self, ["torch"])
......
...@@ -21,6 +21,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( ...@@ -21,6 +21,7 @@ MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
("BertConfig", "BertForQuestionAnswering"), ("BertConfig", "BertForQuestionAnswering"),
("XLNetConfig", "XLNetForQuestionAnsweringSimple"), ("XLNetConfig", "XLNetForQuestionAnsweringSimple"),
("FlaubertConfig", "FlaubertForQuestionAnsweringSimple"), ("FlaubertConfig", "FlaubertForQuestionAnsweringSimple"),
("MegatronBertConfig", "MegatronBertForQuestionAnswering"),
("MobileBertConfig", "MobileBertForQuestionAnswering"), ("MobileBertConfig", "MobileBertForQuestionAnswering"),
("XLMConfig", "XLMForQuestionAnsweringSimple"), ("XLMConfig", "XLMForQuestionAnsweringSimple"),
("ElectraConfig", "ElectraForQuestionAnswering"), ("ElectraConfig", "ElectraForQuestionAnswering"),
......
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch MegatronBERT model. """
import math
import os
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertConfig,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class MegatronBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=64,
embedding_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.embedding_size = embedding_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = MegatronBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
embedding_size=self.embedding_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_megatron_bert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_megatron_bert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_causal_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_megatron_bert_for_next_sequence_prediction(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=sequence_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
def create_and_check_megatron_bert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
def create_and_check_megatron_bert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MegatronBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_megatron_bert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = MegatronBertForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_megatron_bert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = MegatronBertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_megatron_bert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = MegatronBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class MegatronBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
# test_resize_embeddings = False
test_head_masking = False
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = MegatronBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=MegatronBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_megatron_bert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*config_and_inputs)
def test_for_next_sequence_prediction(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*config_and_inputs)
def _long_tensor(tok_lst):
return torch.tensor(
tok_lst,
dtype=torch.long,
device=torch_device,
)
TOLERANCE = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class MegatronBertModelIntegrationTests(unittest.TestCase):
@slow
def test_inference_no_head(self):
directory = "nvidia/megatron-bert-uncased-345m"
if "MYDIR" in os.environ:
directory = os.path.join(os.environ["MYDIR"], directory)
model = MegatronBertModel.from_pretrained(directory)
model.to(torch_device)
model.half()
input_ids = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size((1, 9, 1024))
self.assertEqual(output.shape, expected_shape)
expected = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728]
for ii in range(3):
for jj in range(3):
a = output[0, ii, jj]
b = expected[3 * ii + jj]
msg = "ii={} jj={} a={} b={}".format(ii, jj, a, b)
self.assertTrue(math.isclose(a, b, rel_tol=TOLERANCE, abs_tol=TOLERANCE), msg=msg)
...@@ -45,6 +45,10 @@ IGNORE_NON_TESTED = [ ...@@ -45,6 +45,10 @@ IGNORE_NON_TESTED = [
"BlenderbotDecoderWrapper", # Building part of bigger (tested) model. "BlenderbotDecoderWrapper", # Building part of bigger (tested) model.
"MBartEncoder", # Building part of bigger (tested) model. "MBartEncoder", # Building part of bigger (tested) model.
"MBartDecoderWrapper", # Building part of bigger (tested) model. "MBartDecoderWrapper", # Building part of bigger (tested) model.
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
"MegatronBertEncoder", # Building part of bigger (tested) model.
"MegatronBertDecoder", # Building part of bigger (tested) model.
"MegatronBertDecoderWrapper", # Building part of bigger (tested) model.
"PegasusEncoder", # Building part of bigger (tested) model. "PegasusEncoder", # Building part of bigger (tested) model.
"PegasusDecoderWrapper", # Building part of bigger (tested) model. "PegasusDecoderWrapper", # Building part of bigger (tested) model.
"DPREncoder", # Building part of bigger (tested) model. "DPREncoder", # Building part of bigger (tested) model.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment