Unverified Commit 02b176c4 authored by LSinev's avatar LSinev Committed by GitHub
Browse files

Fix torch version comparisons (#18460)

Comparisons like
version.parse(torch.__version__) > version.parse("1.6")
are True for torch==1.6.0+cu101 or torch==1.6.0+cpu

version.parse(version.parse(torch.__version__).base_version) are preferred (and available in pytorch_utils.py
parent be41eaf5
......@@ -30,7 +30,7 @@ from transformers import (
if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
......
......@@ -33,7 +33,7 @@ if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
......
......@@ -26,7 +26,7 @@ from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(torch.__version__) >= version.parse("1.6"):
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
......
......@@ -44,7 +44,7 @@ class GELUActivation(nn.Module):
def __init__(self, use_gelu_python: bool = False):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.4") or use_gelu_python:
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.4") or use_gelu_python:
self.act = self._gelu_python
else:
self.act = nn.functional.gelu
......@@ -110,7 +110,7 @@ class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.7"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
self.act = self._silu_python
else:
self.act = nn.functional.silu
......@@ -130,7 +130,7 @@ class MishActivation(nn.Module):
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.9"):
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.9"):
self.act = self._mish_python
else:
self.act = nn.functional.mish
......
......@@ -273,6 +273,8 @@ def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format
import torch
from torch.onnx import export
from .pytorch_utils import is_torch_less_than_1_11
print(f"Using framework PyTorch: {torch.__version__}")
with torch.no_grad():
......@@ -281,7 +283,7 @@ def convert_pytorch(nlp: Pipeline, opset: int, output: Path, use_external_format
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if parse(torch.__version__) <= parse("1.10.99"):
if is_torch_less_than_1_11:
export(
nlp.model,
model_args,
......
......@@ -20,7 +20,6 @@ from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......@@ -212,7 +216,7 @@ class AlbertEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -24,7 +24,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -41,7 +40,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......@@ -195,7 +199,7 @@ class BertEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -23,7 +23,6 @@ from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -38,7 +37,7 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...pytorch_utils import apply_chunking_to_forward, is_torch_greater_than_1_6
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......@@ -260,7 +259,7 @@ class BigBirdEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -22,7 +22,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -36,7 +35,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_convbert import ConvBertConfig
......@@ -194,7 +198,7 @@ class ConvBertEmbeddings(nn.Module):
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -19,7 +19,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -35,7 +34,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
......@@ -83,7 +87,7 @@ class Data2VecTextForTextEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -21,12 +21,16 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from ...activations import ACT2FN
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
from ...utils import (
ModelOutput,
add_start_docstrings,
......@@ -36,7 +40,7 @@ from ...utils import (
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:
......
......@@ -23,7 +23,6 @@ from typing import Dict, List, Optional, Set, Tuple, Union
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -40,7 +39,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
......@@ -102,7 +106,7 @@ class Embeddings(nn.Module):
self.LayerNorm = nn.LayerNorm(config.dim, eps=1e-12)
self.dropout = nn.Dropout(config.dropout)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
......
......@@ -21,7 +21,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -37,7 +36,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......@@ -165,7 +169,7 @@ class ElectraEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -19,10 +19,10 @@ import random
from typing import Dict, Optional, Tuple, Union
import torch
from packaging import version
from torch import nn
from ...modeling_outputs import BaseModelOutput
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from ..xlm.modeling_xlm import (
XLMForMultipleChoice,
......@@ -139,7 +139,7 @@ class FlaubertModel(XLMModel):
super().__init__(config)
self.layerdrop = getattr(config, "layerdrop", 0.0)
self.pre_norm = getattr(config, "pre_norm", False)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
......
......@@ -22,7 +22,6 @@ from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from transformers.utils.doc import add_code_sample_docstrings
......@@ -30,6 +29,7 @@ from transformers.utils.doc import add_code_sample_docstrings
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import (
ModelOutput,
add_start_docstrings,
......@@ -392,7 +392,7 @@ class FlavaTextEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -21,7 +21,6 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -44,7 +43,7 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...pytorch_utils import apply_chunking_to_forward, is_torch_greater_than_1_6
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
......@@ -118,7 +117,7 @@ class FNetEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long),
......
......@@ -22,12 +22,18 @@ from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:
......@@ -41,7 +47,6 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......
......@@ -21,12 +21,18 @@ from typing import Any, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...pytorch_utils import (
Conv1D,
find_pruneable_heads_and_indices,
is_torch_greater_or_equal_than_1_6,
prune_conv1d_layer,
)
if version.parse(torch.__version__) >= version.parse("1.6"):
if is_torch_greater_or_equal_than_1_6:
is_amp_available = True
from torch.cuda.amp import autocast
else:
......@@ -39,7 +45,6 @@ from ...modeling_outputs import (
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_imagegpt import ImageGPTConfig
......
......@@ -21,7 +21,6 @@ from typing import Optional
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from ...activations import ACT2FN
......@@ -34,6 +33,7 @@ from ...modeling_utils import (
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ...pytorch_utils import is_torch_greater_than_1_6
from ...utils import logging
from .configuration_mctct import MCTCTConfig
......@@ -153,7 +153,7 @@ class MCTCTEmbeddings(nn.Module):
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
......
......@@ -23,7 +23,6 @@ from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
......@@ -39,7 +38,12 @@ from ...modeling_outputs import (
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...pytorch_utils import (
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
is_torch_greater_than_1_6,
prune_linear_layer,
)
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
......@@ -183,7 +187,7 @@ class NezhaEmbeddings(nn.Module):
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if version.parse(torch.__version__) > version.parse("1.6.0"):
if is_torch_greater_than_1_6:
self.register_buffer(
"token_type_ids",
torch.zeros((1, config.max_position_embeddings), dtype=torch.long),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment