"tests/L0/vscode:/vscode.git/clone" did not exist on "4cfbe05c7a81c03010130566bdcea9aa8ab93142"
Unverified Commit 026a2ff2 authored by Ratthachat (Jung)'s avatar Ratthachat (Jung) Committed by GitHub
Browse files

Add TFDPR (#8203)

* Create modeling_tf_dpr.py

* Add TFDPR

* Add back TFPegasus, TFMarian, TFMBart, TFBlenderBot

last commit accidentally deleted these 4 lines, so I recover them back

* Add TFDPR

* Add TFDPR

* clean up some comments, add TF input-style doc string

* Add TFDPR

* Make return_dict=False as default

* Fix return_dict bug (in .from_pretrained)

* Add get_input_embeddings()

* Create test_modeling_tf_dpr.py

The current version is already passed all 27 tests!
Please see the test run at : 
https://colab.research.google.com/drive/1czS_m9zy5k-iSJbzA_DP1k1xAAC_sdkf?usp=sharing



* fix quality

* delete init weights

* run fix copies

* fix repo consis

* del config_class, load_tf_weights

They shoud be 'pytorch only'

* add config_class back

after removing it, test failed ... so totally only removing "use_tf_weights = None" on Lysandre suggestion

* newline after .. note::

* import tf, np (Necessary for ModelIntegrationTest)

* slow_test from_pretrained with from_pt=True

At the moment we don't have TF weights (since we don't have official official TF model)
Previously, I did not run slow test, so I missed this bug

* Add simple TFDPRModelIntegrationTest

Note that this is just a test that TF and Pytorch gives approx. the same output.
However, I could not test with the official DPR repo's output yet

* upload correct tf model

* remove position_ids as missing keys
Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: default avatarpatrickvonplaten <patrick@huggingface.co>
parent a38d1c7c
......@@ -99,3 +99,22 @@ DPRReader
.. autoclass:: transformers.DPRReader
:members: forward
TFDPRContextEncoder
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDPRContextEncoder
:members: call
TFDPRQuestionEncoder
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDPRQuestionEncoder
:members: call
TFDPRReader
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFDPRReader
:members: call
......@@ -406,6 +406,9 @@ if is_torch_available():
DistilBertPreTrainedModel,
)
from .modeling_dpr import (
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPRContextEncoder,
DPRPretrainedContextEncoder,
DPRPretrainedQuestionEncoder,
......@@ -713,6 +716,17 @@ if is_tf_available():
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
from .modeling_tf_dpr import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDPRContextEncoder,
TFDPRPretrainedContextEncoder,
TFDPRPretrainedQuestionEncoder,
TFDPRPretrainedReader,
TFDPRQuestionEncoder,
TFDPRReader,
)
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
......
......@@ -25,6 +25,9 @@ from transformers import (
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
......@@ -43,6 +46,7 @@ from transformers import (
CamembertConfig,
CTRLConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
FlaubertConfig,
GPT2Config,
......@@ -59,6 +63,9 @@ from transformers import (
TFCTRLLMHeadModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
TFElectraForPreTraining,
TFFlaubertWithLMHeadModel,
TFGPT2LMHeadModel,
......@@ -98,6 +105,9 @@ if is_torch_available():
CTRLLMHeadModel,
DistilBertForMaskedLM,
DistilBertForQuestionAnswering,
DPRContextEncoder,
DPRQuestionEncoder,
DPRReader,
ElectraForPreTraining,
FlaubertWithLMHeadModel,
GPT2LMHeadModel,
......@@ -147,6 +157,18 @@ MODEL_CLASSES = {
BertForSequenceClassification,
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
),
"dpr": (
DPRConfig,
TFDPRQuestionEncoder,
TFDPRContextEncoder,
TFDPRReader,
DPRQuestionEncoder,
DPRContextEncoder,
DPRReader,
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
),
"gpt2": (
GPT2Config,
TFGPT2LMHeadModel,
......
......@@ -43,6 +43,7 @@ from .configuration_auto import (
replace_list_option_in_docstrings,
)
from .configuration_blenderbot import BlenderbotConfig
from .configuration_dpr import DPRConfig
from .configuration_marian import MarianConfig
from .configuration_mbart import MBartConfig
from .configuration_pegasus import PegasusConfig
......@@ -87,6 +88,7 @@ from .modeling_tf_distilbert import (
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
from .modeling_tf_dpr import TFDPRQuestionEncoder
from .modeling_tf_electra import (
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
......@@ -192,6 +194,7 @@ TF_MODEL_MAPPING = OrderedDict(
(CTRLConfig, TFCTRLModel),
(ElectraConfig, TFElectraModel),
(FunnelConfig, TFFunnelModel),
(DPRConfig, TFDPRQuestionEncoder),
]
)
......
This diff is collapsed.
......@@ -735,6 +735,15 @@ class DistilBertPreTrainedModel:
requires_pytorch(self)
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DPRContextEncoder:
def __init__(self, *args, **kwargs):
requires_pytorch(self)
......
......@@ -495,6 +495,45 @@ class TFDistilBertPreTrainedModel:
requires_tf(self)
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None
class TFDPRContextEncoder:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDPRPretrainedContextEncoder:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDPRPretrainedQuestionEncoder:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDPRPretrainedReader:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDPRQuestionEncoder:
def __init__(self, *args, **kwargs):
requires_tf(self)
class TFDPRReader:
def __init__(self, *args, **kwargs):
requires_tf(self)
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None
......
......@@ -24,6 +24,8 @@ from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention
if is_torch_available():
import torch
from transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader
from transformers.modeling_dpr import (
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
......@@ -227,3 +229,36 @@ class DPRModelTest(ModelTesterMixin, unittest.TestCase):
for model_name in DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPRReader.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class DPRModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False)
model.to(torch_device)
input_ids = torch.tensor(
[[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]], dtype=torch.long, device=torch_device
) # [CLS] hello, is my dog cute? [SEP]
output = model(input_ids)[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
expected_slice = torch.tensor(
[
[
0.03236253,
0.12753335,
0.16818509,
0.00279786,
0.3896933,
0.24264945,
0.2178971,
-0.02335227,
-0.08481959,
-0.14324117,
]
],
dtype=torch.float,
device=torch_device,
)
self.assertTrue(torch.allclose(output[:, :10], expected_slice, atol=1e-4))
# coding=utf-8
# Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class TFDPRModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
projection_dim=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.projection_dim = projection_dim
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor(
[self.batch_size, self.seq_length], vocab_size=2
) # follow test_modeling_tf_ctrl.py
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
# MODIFY
return_dict=False,
)
config = DPRConfig(projection_dim=self.projection_dim, **config.to_dict())
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_dpr_context_encoder(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDPRContextEncoder(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids, return_dict=True) # MODIFY
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_dpr_question_encoder(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDPRQuestionEncoder(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids, return_dict=True) # MODIFY
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_dpr_reader(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDPRReader(config=config)
result = model(input_ids, attention_mask=input_mask, return_dict=True) # MODIFY
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
@require_tf
class TFDPRModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
test_resize_embeddings = False
test_missing_keys = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = TFDPRModelTester(self)
self.config_tester = ConfigTester(self, config_class=DPRConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_dpr_context_encoder_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*config_and_inputs)
def test_dpr_question_encoder_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*config_and_inputs)
def test_dpr_reader_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRContextEncoder.from_pretrained(model_name, from_pt=True)
self.assertIsNotNone(model)
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRContextEncoder.from_pretrained(model_name, from_pt=True)
self.assertIsNotNone(model)
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRQuestionEncoder.from_pretrained(model_name, from_pt=True)
self.assertIsNotNone(model)
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRReader.from_pretrained(model_name, from_pt=True)
self.assertIsNotNone(model)
@require_tf
class TFDPRModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False)
input_ids = tf.constant(
[[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]]
) # [CLS] hello, is my dog cute? [SEP]
output = model(input_ids)[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
expected_slice = tf.constant(
[
[
0.03236253,
0.12753335,
0.16818509,
0.00279786,
0.3896933,
0.24264945,
0.2178971,
-0.02335227,
-0.08481959,
-0.14324117,
]
]
)
self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4))
......@@ -33,6 +33,8 @@ IGNORE_NON_TESTED = [
"DPRSpanPredictor", # Building part of bigger (tested) model.
"ReformerForMaskedLM", # Needs to be setup as decoder.
"T5Stack", # Building part of bigger (tested) model.
"TFDPREncoder", # Building part of bigger (tested) model.
"TFDPRSpanPredictor", # Building part of bigger (tested) model.
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
"TFRobertaForMultipleChoice", # TODO: fix
]
......@@ -57,6 +59,8 @@ IGNORE_NON_DOCUMENTED = [
"DPREncoder", # Building part of bigger (documented) model.
"DPRSpanPredictor", # Building part of bigger (documented) model.
"T5Stack", # Building part of bigger (tested) model.
"TFDPREncoder", # Building part of bigger (documented) model.
"TFDPRSpanPredictor", # Building part of bigger (documented) model.
"TFElectraMainLayer", # Building part of bigger (documented) model (should it be a TFPreTrainedModel ?)
]
......@@ -87,6 +91,10 @@ IGNORE_NON_AUTO_CONFIGURED = [
"RagSequenceForGeneration",
"RagTokenForGeneration",
"T5Stack",
"TFDPRContextEncoder",
"TFDPREncoder",
"TFDPRReader",
"TFDPRSpanPredictor",
"TFFunnelBaseModel",
"TFGPT2DoubleHeadsModel",
"TFOpenAIGPTDoubleHeadsModel",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment