@@ -168,3 +168,34 @@ This command is the same and will work for:
...
@@ -168,3 +168,34 @@ This command is the same and will work for:
- a training on TPUs
- a training on TPUs
Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
## XNLI
Based on the script [`run_xnli.py`](https://github.com/huggingface/transformers/examples/pytorch/text-classification/run_xnli.py).
[XNLI](https://www.nyu.edu/projects/bowman/xnli/) is a crowd-sourced dataset based on [MultiNLI](http://www.nyu.edu/projects/bowman/multinli/). It is an evaluation benchmark for cross-lingual text representations. Pairs of text are labeled with textual entailment annotations for 15 different languages (including both high-resource language such as English and low-resource languages such as Swahili).
#### Fine-tuning on XNLI
This example code fine-tunes mBERT (multi-lingual BERT) on the XNLI dataset. It runs in 106 mins on a single tesla V100 16GB.