"docs/source/vscode:/vscode.git/clone" did not exist on "f3cf8ae7b3b432cd875d34096c9ab69e43a10809"
Unverified Commit 01977466 authored by arfy slowy's avatar arfy slowy Committed by GitHub
Browse files

fix: typo spelling grammar (#13212)

* fix: typo spelling grammar

* fix: make fixup
parent ef83dc4f
......@@ -158,7 +158,7 @@ def validate_model_outputs(
# We flatten potential collection of outputs (i.e. past_keys) to a flat structure
for name, value in ref_outputs.items():
# Overwriting the output name as "present" since it is the name used for the ONNX ouputs
# Overwriting the output name as "present" since it is the name used for the ONNX outputs
# ("past_key_values" being taken for the ONNX inputs)
if name == "past_key_values":
name = "present"
......
......@@ -114,7 +114,7 @@ class FeaturesManager:
Args:
model: The model to export
feature: The name of the feature to check if it is avaiable
feature: The name of the feature to check if it is available
Returns:
(str) The type of the model (OnnxConfig) The OnnxConfig instance holding the model export properties
......
......@@ -1375,7 +1375,7 @@ INIT_TOKENIZER_DOCSTRING = r"""
high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the
low-level being the :obj:`short-cut-names` of the pretrained models with, as associated values, the
:obj:`url` to the associated pretrained vocabulary file.
- **max_model_input_sizes** (:obj:`Dict[str, Optinal[int]]`) -- A dictionary with, as keys, the
- **max_model_input_sizes** (:obj:`Dict[str, Optional[int]]`) -- A dictionary with, as keys, the
:obj:`short-cut-names` of the pretrained models, and as associated values, the maximum length of the sequence
inputs of this model, or :obj:`None` if the model has no maximum input size.
- **pretrained_init_configuration** (:obj:`Dict[str, Dict[str, Any]]`) -- A dictionary with, as keys, the
......@@ -1785,7 +1785,7 @@ class PreTrainedTokenizerBase(SpecialTokensMixin, PushToHubMixin):
config = AutoConfig.from_pretrained(pretrained_model_name_or_path)
config_tokenizer_class = config.tokenizer_class
except (OSError, ValueError, KeyError):
# skip if an error occured.
# skip if an error occurred.
config = None
if config_tokenizer_class is None:
# Third attempt. If we have not yet found the original type of the tokenizer,
......
......@@ -707,7 +707,7 @@ class PreTrainedTokenizerFast(PreTrainedTokenizerBase):
special_token_full = getattr(self, f"_{token}")
if isinstance(special_token_full, AddedToken):
# Create an added token with the same paramters except the content
# Create an added token with the same parameters except the content
kwargs[token] = AddedToken(
special_token,
single_word=special_token_full.single_word,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment