Unverified Commit 00c4e395 authored by Lysandre Debut's avatar Lysandre Debut Committed by GitHub
Browse files

Merge branch 'master' into squad-refactor

parents e9217da5 0cb16386
import torch
class ClassificationHead(torch.nn.Module):
"""Classification Head for transformer encoders"""
def __init__(self, class_size, embed_size):
super(ClassificationHead, self).__init__()
self.class_size = class_size
self.embed_size = embed_size
# self.mlp1 = torch.nn.Linear(embed_size, embed_size)
# self.mlp2 = (torch.nn.Linear(embed_size, class_size))
self.mlp = torch.nn.Linear(embed_size, class_size)
def forward(self, hidden_state):
# hidden_state = F.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
logits = self.mlp(hidden_state)
return logits
This diff is collapsed.
This diff is collapsed.
......@@ -22,6 +22,7 @@ import glob
import logging
import os
import random
import json
import numpy as np
import torch
......@@ -47,7 +48,11 @@ from transformers import (WEIGHTS_NAME, BertConfig,
XLNetTokenizer,
DistilBertConfig,
DistilBertForSequenceClassification,
DistilBertTokenizer)
DistilBertTokenizer,
AlbertConfig,
AlbertForSequenceClassification,
AlbertTokenizer,
)
from transformers import AdamW, get_linear_schedule_with_warmup
......@@ -66,7 +71,8 @@ MODEL_CLASSES = {
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer)
}
......@@ -99,6 +105,7 @@ def train(args, train_dataset, model, tokenizer):
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
if args.fp16:
......@@ -170,15 +177,23 @@ def train(args, train_dataset, model, tokenizer):
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
logs = {}
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
eval_key = 'eval_{}'.format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs['learning_rate'] = learning_rate_scalar
logs['loss'] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{'step': global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
......@@ -216,7 +231,7 @@ def evaluate(args, model, tokenizer, prefix=""):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
......
......@@ -47,7 +47,8 @@ from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer,
CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
logger = logging.getLogger(__name__)
......@@ -58,7 +59,8 @@ MODEL_CLASSES = {
'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'camembert': (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer)
}
......@@ -68,7 +70,7 @@ class TextDataset(Dataset):
directory, filename = os.path.split(file_path)
cached_features_file = os.path.join(directory, args.model_name_or_path + '_cached_lm_' + str(block_size) + '_' + filename)
if os.path.exists(cached_features_file):
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
with open(cached_features_file, 'rb') as handle:
self.examples = pickle.load(handle)
......@@ -215,6 +217,10 @@ def train(args, train_dataset, model, tokenizer):
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model_to_resize = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_resize.resize_token_embeddings(len(tokenizer))
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
......@@ -297,7 +303,7 @@ def evaluate(args, model, tokenizer, prefix=""):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
......@@ -431,7 +437,7 @@ def main():
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
args = parser.parse_args()
if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm:
if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm "
"flag (masked language modeling).")
if args.eval_data_file is None and args.do_eval:
......
......@@ -226,7 +226,7 @@ def evaluate(args, model, tokenizer, prefix="", test=False):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
......
......@@ -127,7 +127,7 @@ def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id):
"attention_mask": batch[1],
"labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"]: batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
......@@ -217,7 +217,7 @@ def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""
"attention_mask": batch[1],
"labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"]: batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
inputs["token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet"] else None # XLM and RoBERTa don"t use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
......
......@@ -43,7 +43,8 @@ from transformers import (WEIGHTS_NAME, BertConfig,
XLMTokenizer, XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer)
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
......@@ -56,7 +57,8 @@ MODEL_CLASSES = {
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer)
}
def set_seed(args):
......@@ -121,7 +123,7 @@ def train(args, train_dataset, model, tokenizer):
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
global_step = 1
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
......@@ -214,7 +216,7 @@ def evaluate(args, model, tokenizer, prefix=""):
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
......@@ -558,7 +560,7 @@ def main():
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
model = model_class.from_pretrained(args.output_dir, force_download=True)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
......@@ -576,7 +578,7 @@ def main():
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model = model_class.from_pretrained(checkpoint, force_download=True)
model.to(args.device)
# Evaluate
......
This diff is collapsed.
This diff is collapsed.
......@@ -36,9 +36,15 @@ To create the package for pypi.
from io import open
from setuptools import find_packages, setup
extras = {
'serving': ['uvicorn', 'fastapi']
}
extras['all'] = [package for package in extras.values()]
setup(
name="transformers",
version="2.1.1",
version="2.2.1",
author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors",
author_email="thomas@huggingface.co",
description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch",
......@@ -61,8 +67,11 @@ setup(
"transformers=transformers.__main__:main",
]
},
extras_require=extras,
scripts=[
'transformers-cli'
],
# python_requires='>=3.5.0',
tests_require=['pytest'],
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
......
......@@ -32,7 +32,7 @@ import numpy as np
import tensorflow as tf
from .configuration_xxx import XxxConfig
from .modeling_tf_utils import TFPreTrainedModel, get_initializer
from .modeling_tf_utils import TFPreTrainedModel, get_initializer, shape_list
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
......@@ -121,9 +121,9 @@ class TFXxxMainLayer(tf.keras.layers.Layer):
input_ids = inputs
if attention_mask is None:
attention_mask = tf.fill(tf.shape(input_ids), 1)
attention_mask = tf.fill(shape_list(input_ids), 1)
if token_type_ids is None:
token_type_ids = tf.fill(tf.shape(input_ids), 0)
token_type_ids = tf.fill(shape_list(input_ids), 0)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
......
......@@ -18,11 +18,11 @@ from __future__ import print_function
import unittest
import shutil
import pytest
import sys
from .modeling_tf_common_test import (TFCommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_tf, slow
from transformers import XxxConfig, is_tf_available
......@@ -33,10 +33,9 @@ if is_tf_available():
TFXxxForTokenClassification,
TFXxxForQuestionAnswering,
TF_XXX_PRETRAINED_MODEL_ARCHIVE_MAP)
else:
pytestmark = pytest.mark.skip("Require TensorFlow")
@require_tf
class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
all_model_classes = (TFXxxModel, TFXxxForMaskedLM, TFXxxForQuestionAnswering,
......@@ -244,7 +243,7 @@ class TFXxxModelTest(TFCommonTestCases.TFCommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in ['xxx-base-uncased']:
......
......@@ -18,12 +18,12 @@ from __future__ import print_function
import unittest
import shutil
import pytest
from transformers import is_torch_available
from .modeling_common_test import (CommonTestCases, ids_tensor)
from .configuration_common_test import ConfigTester
from .utils import require_torch, slow, torch_device
if is_torch_available():
from transformers import (XxxConfig, XxxModel, XxxForMaskedLM,
......@@ -31,10 +31,9 @@ if is_torch_available():
XxxForQuestionAnswering, XxxForSequenceClassification,
XxxForTokenClassification, XxxForMultipleChoice)
from transformers.modeling_xxx import XXX_PRETRAINED_MODEL_ARCHIVE_MAP
else:
pytestmark = pytest.mark.skip("Require Torch")
@require_torch
class XxxModelTest(CommonTestCases.CommonModelTester):
all_model_classes = (XxxModel, XxxForMaskedLM, XxxForQuestionAnswering,
......@@ -131,6 +130,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
......@@ -148,6 +148,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_masked_lm(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, masked_lm_labels=token_labels)
result = {
......@@ -162,6 +163,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_question_answering(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
model = XxxForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids,
start_positions=sequence_labels, end_positions=sequence_labels)
......@@ -182,6 +184,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_sequence_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = XxxForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
result = {
......@@ -197,6 +200,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
def create_and_check_xxx_for_token_classification(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels):
config.num_labels = self.num_labels
model = XxxForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
......@@ -243,7 +247,7 @@ class XxxModelTest(CommonTestCases.CommonModelTester):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_xxx_for_token_classification(*config_and_inputs)
@pytest.mark.slow
@slow
def test_model_from_pretrained(self):
cache_dir = "/tmp/transformers_test/"
for model_name in list(XXX_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
......
#!/usr/bin/env python
from argparse import ArgumentParser
from transformers.commands.user import UserCommands
if __name__ == '__main__':
parser = ArgumentParser(description='Transformers CLI tool', usage='transformers-cli <command> [<args>]')
commands_parser = parser.add_subparsers(help='transformers-cli command helpers')
# Register commands
UserCommands.register_subcommand(commands_parser)
# Let's go
args = parser.parse_args()
if not hasattr(args, 'func'):
parser.print_help()
exit(1)
# Run
service = args.func(args)
service.run()
__version__ = "2.1.1"
__version__ = "2.2.1"
# Work around to update TensorFlow's absl.logging threshold which alters the
# default Python logging output behavior when present.
......@@ -26,11 +26,12 @@ from .data import (is_sklearn_available,
InputExample, InputFeatures, DataProcessor,
glue_output_modes, glue_convert_examples_to_features,
glue_processors, glue_tasks_num_labels,
xnli_output_modes, xnli_processors, xnli_tasks_num_labels,
squad_convert_examples_to_features, SquadFeatures,
SquadExample, SquadV1Processor, SquadV2Processor)
if is_sklearn_available():
from .data import glue_compute_metrics
from .data import glue_compute_metrics, xnli_compute_metrics
# Tokenizers
from .tokenization_utils import (PreTrainedTokenizer)
......@@ -44,6 +45,7 @@ from .tokenization_xlnet import XLNetTokenizer, SPIECE_UNDERLINE
from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from .tokenization_distilbert import DistilBertTokenizer
from .tokenization_albert import AlbertTokenizer
from .tokenization_camembert import CamembertTokenizer
# Configurations
......@@ -59,6 +61,7 @@ from .configuration_ctrl import CTRLConfig, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_xlm import XLMConfig, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_roberta import RobertaConfig, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_distilbert import DistilBertConfig, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_albert import AlbertConfig, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
from .configuration_camembert import CamembertConfig, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
# Modeling
......@@ -85,9 +88,10 @@ if is_torch_available():
CTRLLMHeadModel,
CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlnet import (XLNetPreTrainedModel, XLNetModel, XLNetLMHeadModel,
XLNetForSequenceClassification, XLNetForMultipleChoice,
XLNetForQuestionAnsweringSimple, XLNetForQuestionAnswering,
load_tf_weights_in_xlnet, XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
XLNetForSequenceClassification, XLNetForTokenClassification,
XLNetForMultipleChoice, XLNetForQuestionAnsweringSimple,
XLNetForQuestionAnswering, load_tf_weights_in_xlnet,
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_xlm import (XLMPreTrainedModel , XLMModel,
XLMWithLMHeadModel, XLMForSequenceClassification,
XLMForQuestionAnswering, XLMForQuestionAnsweringSimple,
......@@ -96,7 +100,7 @@ if is_torch_available():
RobertaForSequenceClassification, RobertaForMultipleChoice,
RobertaForTokenClassification,
ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_distilbert import (DistilBertForMaskedLM, DistilBertModel,
from .modeling_distilbert import (DistilBertPreTrainedModel, DistilBertForMaskedLM, DistilBertModel,
DistilBertForSequenceClassification, DistilBertForQuestionAnswering,
DistilBertForTokenClassification,
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
......@@ -106,6 +110,10 @@ if is_torch_available():
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_encoder_decoder import PreTrainedEncoderDecoder, Model2Model
from .modeling_albert import (AlbertPreTrainedModel, AlbertModel, AlbertForMaskedLM, AlbertForSequenceClassification,
AlbertForQuestionAnswering,
load_tf_weights_in_albert, ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
# Optimization
from .optimization import (AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup)
......@@ -113,7 +121,7 @@ if is_torch_available():
# TensorFlow
if is_tf_available():
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, TFSequenceSummary, shape_list
from .modeling_tf_auto import (TFAutoModel, TFAutoModelForSequenceClassification, TFAutoModelForQuestionAnswering,
TFAutoModelWithLMHead)
......@@ -139,6 +147,7 @@ if is_tf_available():
from .modeling_tf_xlnet import (TFXLNetPreTrainedModel, TFXLNetMainLayer,
TFXLNetModel, TFXLNetLMHeadModel,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetForQuestionAnsweringSimple,
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_MAP)
......@@ -157,6 +166,7 @@ if is_tf_available():
from .modeling_tf_distilbert import (TFDistilBertPreTrainedModel, TFDistilBertMainLayer,
TFDistilBertModel, TFDistilBertForMaskedLM,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForQuestionAnswering,
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
......@@ -164,6 +174,12 @@ if is_tf_available():
TFCTRLLMHeadModel,
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP)
from .modeling_tf_albert import (TFAlbertPreTrainedModel, TFAlbertModel, TFAlbertForMaskedLM,
TFAlbertForSequenceClassification,
TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP)
# Optimization
from .optimization_tf import (WarmUp, create_optimizer, AdamWeightDecay, GradientAccumulator)
# TF 2.0 <=> PyTorch conversion utilities
from .modeling_tf_pytorch_utils import (convert_tf_weight_name_to_pt_weight_name,
load_pytorch_checkpoint_in_tf2_model,
......
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class BaseTransformersCLICommand(ABC):
@staticmethod
@abstractmethod
def register_subcommand(parser: ArgumentParser):
raise NotImplementedError()
@abstractmethod
def run(self):
raise NotImplementedError()
from argparse import ArgumentParser
from getpass import getpass
import os
from transformers.commands import BaseTransformersCLICommand
from transformers.hf_api import HfApi, HfFolder, HTTPError
class UserCommands(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
login_parser = parser.add_parser('login')
login_parser.set_defaults(func=lambda args: LoginCommand(args))
whoami_parser = parser.add_parser('whoami')
whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args))
logout_parser = parser.add_parser('logout')
logout_parser.set_defaults(func=lambda args: LogoutCommand(args))
list_parser = parser.add_parser('ls')
list_parser.set_defaults(func=lambda args: ListObjsCommand(args))
# upload
upload_parser = parser.add_parser('upload')
upload_parser.add_argument('file', type=str, help='Local filepath of the file to upload.')
upload_parser.add_argument('--filename', type=str, default=None, help='Optional: override object filename on S3.')
upload_parser.set_defaults(func=lambda args: UploadCommand(args))
class ANSI:
"""
Helper for en.wikipedia.org/wiki/ANSI_escape_code
"""
_bold = u"\u001b[1m"
_reset = u"\u001b[0m"
@classmethod
def bold(cls, s):
return "{}{}{}".format(cls._bold, s, cls._reset)
class BaseUserCommand:
def __init__(self, args):
self.args = args
self._api = HfApi()
class LoginCommand(BaseUserCommand):
def run(self):
print("""
_| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|
_| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|
_|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|
_| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|
_| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|
""")
username = input("Username: ")
password = getpass()
try:
token = self._api.login(username, password)
except HTTPError as e:
# probably invalid credentials, display error message.
print(e)
exit(1)
HfFolder.save_token(token)
print("Login successful")
print("Your token:", token, "\n")
print("Your token has been saved to", HfFolder.path_token)
class WhoamiCommand(BaseUserCommand):
def run(self):
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit()
try:
user = self._api.whoami(token)
print(user)
except HTTPError as e:
print(e)
class LogoutCommand(BaseUserCommand):
def run(self):
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit()
HfFolder.delete_token()
self._api.logout(token)
print("Successfully logged out.")
class ListObjsCommand(BaseUserCommand):
def tabulate(self, rows, headers):
# type: (List[List[Union[str, int]]], List[str]) -> str
"""
Inspired by:
stackoverflow.com/a/8356620/593036
stackoverflow.com/questions/9535954/printing-lists-as-tabular-data
"""
col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)]
row_format = ("{{:{}}} " * len(headers)).format(*col_widths)
lines = []
lines.append(
row_format.format(*headers)
)
lines.append(
row_format.format(*["-" * w for w in col_widths])
)
for row in rows:
lines.append(
row_format.format(*row)
)
return "\n".join(lines)
def run(self):
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit(1)
try:
objs = self._api.list_objs(token)
except HTTPError as e:
print(e)
exit(1)
if len(objs) == 0:
print("No shared file yet")
exit()
rows = [ [
obj.filename,
obj.LastModified,
obj.ETag,
obj.Size
] for obj in objs ]
print(
self.tabulate(rows, headers=["Filename", "LastModified", "ETag", "Size"])
)
class UploadCommand(BaseUserCommand):
def run(self):
token = HfFolder.get_token()
if token is None:
print("Not logged in")
exit(1)
filepath = os.path.join(os.getcwd(), self.args.file)
filename = self.args.filename if self.args.filename is not None else os.path.basename(filepath)
print(
"About to upload file {} to S3 under filename {}".format(
ANSI.bold(filepath), ANSI.bold(filename)
)
)
choice = input("Proceed? [Y/n] ").lower()
if not(choice == "" or choice == "y" or choice == "yes"):
print("Abort")
exit()
print(
ANSI.bold("Uploading... This might take a while if file is large")
)
access_url = self._api.presign_and_upload(
token=token, filename=filename, filepath=filepath
)
print("Your file now lives at:")
print(access_url)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ALBERT model configuration """
from .configuration_utils import PretrainedConfig
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
'albert-base-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-config.json",
'albert-large-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-config.json",
'albert-xlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-config.json",
'albert-xxlarge-v1': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-config.json",
'albert-base-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v2-config.json",
'albert-large-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-large-v2-config.json",
'albert-xlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xlarge-v2-config.json",
'albert-xxlarge-v2': "https://s3.amazonaws.com/models.huggingface.co/bert/albert-xxlarge-v2-config.json",
}
class AlbertConfig(PretrainedConfig):
"""Configuration for `AlbertModel`.
The default settings match the configuration of model `albert_xxlarge`.
"""
pretrained_config_archive_map = ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP
def __init__(self,
vocab_size_or_config_json_file=30000,
embedding_size=128,
hidden_size=4096,
num_hidden_layers=12,
num_hidden_groups=1,
num_attention_heads=64,
intermediate_size=16384,
inner_group_num=1,
hidden_act="gelu_new",
hidden_dropout_prob=0,
attention_probs_dropout_prob=0,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12, **kwargs):
"""Constructs AlbertConfig.
Args:
vocab_size: Vocabulary size of `inputs_ids` in `AlbertModel`.
embedding_size: size of voc embeddings.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_hidden_groups: Number of group for the hidden layers, parameters in
the same group are shared.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
inner_group_num: int, number of inner repetition of attention and ffn.
down_scale_factor: float, the scale to apply
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler.
hidden_dropout_prob: The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`AlbertModel`.
initializer_range: The stdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
super(AlbertConfig, self).__init__(**kwargs)
self.vocab_size = vocab_size_or_config_json_file
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_groups = num_hidden_groups
self.num_attention_heads = num_attention_heads
self.inner_group_num = inner_group_num
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment