Commit 028e76f4 authored by chenpangpang's avatar chenpangpang
Browse files

feat: 初始提交

parent 45467ac3
{
"crop_size": 224,
"do_center_crop": true,
"do_convert_rgb": true,
"do_normalize": true,
"do_resize": true,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"resample": 3,
"size": 224
}
import torch
import numpy as np
import random
import os
import sys
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
import spaces
import gradio as gr
from photomaker import PhotoMakerStableDiffusionXLPipeline
from style_template import styles
from aspect_ratio_template import aspect_ratios
# global variable
base_model_path = 'SG161222/RealVisXL_V4.0'
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photographic (Default)"
ASPECT_RATIO_LABELS = list(aspect_ratios)
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0]
# download PhotoMaker checkpoint to cache
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker", filename="photomaker-v1.bin", repo_type="model")
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch_dtype,
use_safetensors=True,
variant="fp16",
# local_files_only=True,
).to(device)
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img",
pm_version="v1",
)
pipe.id_encoder.to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
# pipe.set_adapters(["photomaker"], adapter_weights=[1.0])
pipe.fuse_lora()
pipe.to(device)
@spaces.GPU
def generate_image(upload_images, prompt, negative_prompt, aspect_ratio_name, style_name, num_steps, style_strength_ratio, num_outputs, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
# check the trigger word
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
input_ids = pipe.tokenizer.encode(prompt)
if image_token_id not in input_ids:
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2️⃣")
if input_ids.count(image_token_id) > 1:
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")
# determine output dimensions by the aspect ratio
output_w, output_h = aspect_ratios[aspect_ratio_name]
print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}")
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
if upload_images is None:
raise gr.Error(f"Cannot find any input face image! Please refer to step 1️⃣")
input_id_images = []
for img in upload_images:
input_id_images.append(load_image(img))
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(start_merge_step)
images = pipe(
prompt=prompt,
width=output_w,
height=output_h,
input_id_images=input_id_images,
negative_prompt=negative_prompt,
num_images_per_prompt=num_outputs,
num_inference_steps=num_steps,
start_merge_step=start_merge_step,
generator=generator,
guidance_scale=guidance_scale,
).images
return images, gr.update(visible=True)
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def upload_example_to_gallery(images, prompt, style, negative_prompt):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def remove_tips():
return gr.update(visible=False)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def apply_style(style_name: str, positive: str, negative: str = ""):
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + ' ' + negative
def get_image_path_list(folder_name):
image_basename_list = os.listdir(folder_name)
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
return image_path_list
def get_example():
case = [
[
get_image_path_list('./examples/scarletthead_woman'),
"instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
[
get_image_path_list('./examples/newton_man'),
"sci-fi, closeup portrait photo of a man img wearing the sunglasses in Iron man suit, face, slim body, high quality, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
]
return case
### Description and style
logo = r"""
<center><img src='https://photo-maker.github.io/assets/logo.png' alt='PhotoMaker logo' style="width:80px; margin-bottom:10px"></center>
"""
title = r"""
<h1 align="center">PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'><b>PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</b></a>.<br>
<br>
For stylization, you could use our other gradio demo [PhotoMaker-Style](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style).
<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Upload images of someone you want to customize. One image is ok, but more is better. Although we do not perform face detection, the face in the uploaded image should <b>occupy the majority of the image</b>.<br>
2️⃣ Enter a text prompt, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ Click the <b>Submit</b> button to start customizing.
"""
article = r"""
If PhotoMaker is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{li2023photomaker,
title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details.
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhenli1031@gmail.com</b>.
"""
tips = r"""
### Usage tips of PhotoMaker
1. Upload more photos of the person to be customized to **improve ID fidelty**. If the input is Asian face(s), maybe consider adding 'asian' before the class word, e.g., `asian woman img`
2. When stylizing, does the generated face look too realistic? Try switching to our **other gradio demo** [PhotoMaker-Style](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style). Adjust the **Style strength** to 30-50, the larger the number, the less ID fidelty, but the stylization ability will be better.
3. For **faster** speed, reduce the number of generated images and sampling steps. However, please note that reducing the sampling steps may compromise the ID fidelity.
"""
# We have provided some generate examples and comparisons at: [this website]().
# 3. Don't make the prompt too long, as we will trim it if it exceeds 77 tokens.
# 4. When generating realistic photos, if it's not real enough, try switching to our other gradio application [PhotoMaker-Realistic]().
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
# gr.DuplicateButton(
# value="Duplicate Space for private use ",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag (Select) 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman img', 'img' is the trigger word.",
placeholder="A photo of a [man/woman img]...")
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO)
submit = gr.Button("Submit")
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=20,
maximum=100,
step=1,
value=50,
)
style_strength_ratio = gr.Slider(
label="Style strength (%)",
minimum=15,
maximum=50,
step=1,
value=20,
)
num_outputs = gr.Slider(
label="Number of output images",
minimum=1,
maximum=4,
step=1,
value=2,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
usage_tips = gr.Markdown(label="Usage tips of PhotoMaker", value=tips ,visible=False)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=[files, prompt, negative_prompt, aspect_ratio, style, num_steps, style_strength_ratio, num_outputs, guidance_scale, seed],
outputs=[gallery, usage_tips]
)
gr.Examples(
examples=get_example(),
inputs=[files, prompt, style, negative_prompt],
run_on_click=True,
fn=upload_example_to_gallery,
outputs=[uploaded_files, clear_button, files],
)
gr.Markdown(article)
demo.launch()
import torch
import torchvision.transforms.functional as TF
import numpy as np
import random
import os
import sys
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler, T2IAdapter
from huggingface_hub import hf_hub_download
import spaces
import gradio as gr
from photomaker import PhotoMakerStableDiffusionXLAdapterPipeline
from photomaker import FaceAnalysis2, analyze_faces
from style_template import styles
from aspect_ratio_template import aspect_ratios
# global variable
base_model_path = 'SG161222/RealVisXL_V4.0'
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photographic (Default)"
ASPECT_RATIO_LABELS = list(aspect_ratios)
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0]
enable_doodle_arg = False
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
# load adapter
adapter = T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch_dtype, variant="fp16"
).to(device)
pipe = PhotoMakerStableDiffusionXLAdapterPipeline.from_pretrained(
base_model_path,
adapter=adapter,
torch_dtype=torch_dtype,
use_safetensors=True,
variant="fp16",
).to(device)
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img",
pm_version="v2",
)
pipe.id_encoder.to(device)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
# pipe.set_adapters(["photomaker"], adapter_weights=[1.0])
pipe.fuse_lora()
pipe.to(device)
@spaces.GPU
def generate_image(
upload_images,
prompt,
negative_prompt,
aspect_ratio_name,
style_name,
num_steps,
style_strength_ratio,
num_outputs,
guidance_scale,
seed,
use_doodle,
sketch_image,
adapter_conditioning_scale,
adapter_conditioning_factor,
progress=gr.Progress(track_tqdm=True)
):
if use_doodle:
sketch_image = sketch_image["composite"]
r, g, b, a = sketch_image.split()
sketch_image = a.convert("RGB")
sketch_image = TF.to_tensor(sketch_image) > 0.5 # Inversion
sketch_image = TF.to_pil_image(sketch_image.to(torch.float32))
adapter_conditioning_scale = adapter_conditioning_scale
adapter_conditioning_factor = adapter_conditioning_factor
else:
adapter_conditioning_scale = 0.
adapter_conditioning_factor = 0.
sketch_image = None
# check the trigger word
image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
input_ids = pipe.tokenizer.encode(prompt)
if image_token_id not in input_ids:
raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2️⃣")
if input_ids.count(image_token_id) > 1:
raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")
# determine output dimensions by the aspect ratio
output_w, output_h = aspect_ratios[aspect_ratio_name]
print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}")
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
if upload_images is None:
raise gr.Error(f"Cannot find any input face image! Please refer to step 1️⃣")
input_id_images = []
for img in upload_images:
input_id_images.append(load_image(img))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise gr.Error(f"No face detected, please update the input face image(s)")
id_embeds = torch.stack(id_embed_list)
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Seed: {seed}")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(start_merge_step)
images = pipe(
prompt=prompt,
width=output_w,
height=output_h,
input_id_images=input_id_images,
negative_prompt=negative_prompt,
num_images_per_prompt=num_outputs,
num_inference_steps=num_steps,
start_merge_step=start_merge_step,
generator=generator,
guidance_scale=guidance_scale,
id_embeds=id_embeds,
image=sketch_image,
adapter_conditioning_scale=adapter_conditioning_scale,
adapter_conditioning_factor=adapter_conditioning_factor,
).images
return images, gr.update(visible=True)
def swap_to_gallery(images):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def upload_example_to_gallery(images, prompt, style, negative_prompt):
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)
def remove_back_to_files():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def change_doodle_space(use_doodle):
if use_doodle:
return gr.update(visible=True)
else:
return gr.update(visible=False)
def remove_tips():
return gr.update(visible=False)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + ' ' + negative
def get_image_path_list(folder_name):
image_basename_list = os.listdir(folder_name)
image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
return image_path_list
def get_example():
case = [
[
get_image_path_list('./examples/scarletthead_woman'),
"instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
[
get_image_path_list('./examples/newton_man'),
"sci-fi, closeup portrait photo of a man img wearing the sunglasses in Iron man suit, face, slim body, high quality, film grain",
"(No style)",
"(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
],
]
return case
### Description and style
logo = r"""
<center><img src='https://photo-maker.github.io/assets/logo.png' alt='PhotoMaker logo' style="width:80px; margin-bottom:10px"></center>
"""
title = r"""
<h1 align="center">PhotoMaker V2: Improved ID Fidelity and Better Controllability than PhotoMaker V1</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'><b>PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</b></a>.<br>
The details of PhotoMaker V2 can be found in
<br>
<br>
For previous version of PhotoMaker, you could use our original gradio demos [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker) and [PhotoMaker-Style](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style).
<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Upload images of someone you want to customize. One image is ok, but more is better. Although we do not perform face detection, the face in the uploaded image should <b>occupy the majority of the image</b>.<br>
2️⃣ Enter a text prompt, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ <b>(Optional: but new feature)</b> Select the ‘Enable Drawing Doodle...’ option and draw on the canvas<br>
5️⃣ Click the <b>Submit</b> button to start customizing.
"""
article = r"""
If PhotoMaker V2 is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{li2023photomaker,
title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details.
📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhenli1031@gmail.com</b>.
"""
tips = r"""
### Usage tips of PhotoMaker
1. Upload **more photos**of the person to be customized to **improve ID fidelty**.
2. If you find that the image quality is poor when using doodle for control, you can reduce the conditioning scale and factor of the adapter.
Besides, you could enlarge the ratio for more consistency of your doodle. <br>
If you have any issues, leave the issue in the discussion page of the space. For a more stable (queue-free) experience, you can duplicate the space.
"""
# We have provided some generate examples and comparisons at: [this website]().
css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
# gr.DuplicateButton(
# value="Duplicate Space for private use ",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
with gr.Row():
with gr.Column():
files = gr.Files(
label="Drag (Select) 1 or more photos of your face",
file_types=["image"]
)
uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
with gr.Column(visible=False) as clear_button:
remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
prompt = gr.Textbox(label="Prompt",
info="Try something like 'a photo of a man/woman img', 'img' is the trigger word.",
placeholder="A photo of a [man/woman img]...")
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO)
submit = gr.Button("Submit")
enable_doodle = gr.Checkbox(
label="Enable Drawing Doodle for Control", value=enable_doodle_arg,
info="After enabling this option, PhotoMaker will generate content based on your doodle on the canvas, driven by the T2I-Adapter (Quality may be decreased)",
)
with gr.Accordion("T2I-Adapter-Doodle (Optional)", visible=False) as doodle_space:
with gr.Row():
sketch_image = gr.Sketchpad(
label="Canvas",
type="pil",
crop_size=[1024,1024],
layers=False,
canvas_size=(350, 350),
brush=gr.Brush(default_size=5, colors=["#000000"], color_mode="fixed")
)
with gr.Group():
adapter_conditioning_scale = gr.Slider(
label="Adapter conditioning scale",
minimum=0.5,
maximum=1,
step=0.1,
value=0.7,
)
adapter_conditioning_factor = gr.Slider(
label="Adapter conditioning factor",
info="Fraction of timesteps for which adapter should be applied",
minimum=0.5,
maximum=1,
step=0.1,
value=0.8,
)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=20,
maximum=100,
step=1,
value=50,
)
style_strength_ratio = gr.Slider(
label="Style strength (%)",
minimum=15,
maximum=50,
step=1,
value=20,
)
num_outputs = gr.Slider(
label="Number of output images",
minimum=1,
maximum=4,
step=1,
value=2,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=5,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
gallery = gr.Gallery(label="Generated Images")
usage_tips = gr.Markdown(label="Usage tips of PhotoMaker", value=tips ,visible=False)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
enable_doodle.select(fn=change_doodle_space, inputs=enable_doodle, outputs=doodle_space)
input_list = [
files,
prompt,
negative_prompt,
aspect_ratio,
style,
num_steps,
style_strength_ratio,
num_outputs,
guidance_scale,
seed,
enable_doodle,
sketch_image,
adapter_conditioning_scale,
adapter_conditioning_factor
]
submit.click(
fn=remove_tips,
outputs=usage_tips,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_image,
inputs=input_list,
outputs=[gallery, usage_tips]
)
gr.Examples(
examples=get_example(),
inputs=[files, prompt, style, negative_prompt],
run_on_click=True,
fn=upload_example_to_gallery,
outputs=[uploaded_files, clear_button, files],
)
gr.Markdown(article)
demo.launch()
# Note: Since output width & height need to be divisible by 8, the w & h -values do
# not exactly match the stated aspect ratios... but they are "close enough":)
aspect_ratio_list = [
{
"name": "Instagram (1:1)",
"w": 1024,
"h": 1024,
},
{
"name": "35mm film / Landscape (3:2)",
"w": 1024,
"h": 680,
},
{
"name": "35mm film / Portrait (2:3)",
"w": 680,
"h": 1024,
},
{
"name": "CRT Monitor / Landscape (4:3)",
"w": 1024,
"h": 768,
},
{
"name": "CRT Monitor / Portrait (3:4)",
"w": 768,
"h": 1024,
},
{
"name": "Widescreen TV / Landscape (16:9)",
"w": 1024,
"h": 576,
},
{
"name": "Widescreen TV / Portrait (9:16)",
"w": 576,
"h": 1024,
},
{
"name": "Widescreen Monitor / Landscape (16:10)",
"w": 1024,
"h": 640,
},
{
"name": "Widescreen Monitor / Portrait (10:16)",
"w": 640,
"h": 1024,
},
{
"name": "Cinemascope (2.39:1)",
"w": 1024,
"h": 424,
},
{
"name": "Widescreen Movie (1.85:1)",
"w": 1024,
"h": 552,
},
{
"name": "Academy Movie (1.37:1)",
"w": 1024,
"h": 744,
},
{
"name": "Sheet-print (A-series) / Landscape (297:210)",
"w": 1024,
"h": 720,
},
{
"name": "Sheet-print (A-series) / Portrait (210:297)",
"w": 720,
"h": 1024,
},
]
aspect_ratios = {k["name"]: (k["w"], k["h"]) for k in aspect_ratio_list}
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Disney Charactor",
"prompt": "A Pixar animation character of {prompt} . pixar-style, studio anime, Disney, high-quality",
"negative_prompt": "lowres, bad anatomy, bad hands, text, bad eyes, bad arms, bad legs, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, blurry, grayscale, noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Photographic (Default)",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "Enhance",
"prompt": "breathtaking {prompt} . award-winning, professional, highly detailed",
"negative_prompt": "ugly, deformed, noisy, blurry, distorted, grainy",
},
{
"name": "Comic book",
"prompt": "comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
"negative_prompt": "photograph, deformed, glitch, noisy, realistic, stock photo",
},
{
"name": "Lowpoly",
"prompt": "low-poly style {prompt} . low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
"negative_prompt": "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
},
{
"name": "Line art",
"prompt": "line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
"negative_prompt": "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic",
}
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
\ No newline at end of file
# !pip install opencv-python transformers accelerate
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from photomaker import PhotoMakerStableDiffusionXLPipeline
from photomaker import FaceAnalysis2, analyze_faces
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
prompt = "instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth"
# initialize the models and pipeline
### Load base model
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0", torch_dtype=torch_dtype
).to("cuda")
### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_path),
subfolder="",
weight_name=os.path.basename(photomaker_path),
trigger_word="img" # define the trigger word
)
### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="lcm-lora")
# pipe.set_adapters(["photomaker", "lcm-lora"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
### define the input ID images
input_folder_name = './examples/scarletthead_woman'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# generate image
images = pipe(
prompt,
negative_prompt=negative_prompt,
input_id_images=input_id_images,
id_embeds=id_embeds,
num_images_per_prompt=2,
start_merge_step=10,
).images
for idx, img in enumerate(images):
img.save(os.path.join(output_dir, f"output_pmv2_{idx}.jpg"))
# !pip install opencv-python transformers accelerate
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler, ControlNetModel
from huggingface_hub import hf_hub_download
from controlnet_aux import OpenposeDetector
from photomaker import PhotoMakerStableDiffusionXLControlNetPipeline
from photomaker import FaceAnalysis2, analyze_faces
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0"
controlnet_pose = ControlNetModel.from_pretrained(
controlnet_pose_model, torch_dtype=torch_dtype,
).to("cuda")
prompt = "instagram photo, a photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth"
# download an image
pose_image = load_image(
"./examples/pos_ref.png"
)
pose_image = openpose(pose_image, detect_resolution=512, image_resolution=1024)
# initialize the models and pipeline
controlnet_conditioning_scale = 1.0 # recommended for good generalization
### Load base model
pipe = PhotoMakerStableDiffusionXLControlNetPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
controlnet=controlnet_pose,
torch_dtype=torch_dtype,
).to("cuda")
### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img" # define the trigger word
)
### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="lcm-lora")
# pipe.set_adapters(["photomaker", "lcm-lora"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
### define the input ID images
input_folder_name = './examples/scarletthead_woman'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
### extract insightface embedding
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# generate image
images = pipe(
prompt,
negative_prompt=negative_prompt,
input_id_images=input_id_images,
id_embeds=id_embeds,
controlnet_conditioning_scale=controlnet_conditioning_scale,
image=pose_image,
num_images_per_prompt=2,
start_merge_step=10,
).images
for idx, img in enumerate(images):
img.save(os.path.join(output_dir, f"output_pmv2_cn_{idx}.jpg"))
# !pip install opencv-python transformers accelerate
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from photomaker import PhotoMakerStableDiffusionXLPipeline
from photomaker import FaceAnalysis2, analyze_faces
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
prompt = "portrait photo of a woman img, colorful, perfect face, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration), open mouth"
# # initialize the models and pipeline
### Load base model
pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0", torch_dtype=torch_dtype,
).to("cuda")
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin")
pipe.set_ip_adapter_scale(0.7)
print("Loading images...")
style_images = [load_image(f"./examples/statue.png")]
### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img" # define the trigger word
)
### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="lcm-lora")
# pipe.set_adapters(["photomaker", "lcm-lora"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
### define the input ID images
input_folder_name = './examples/scarletthead_woman'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# generate image
images = pipe(
prompt,
negative_prompt=negative_prompt,
input_id_images=input_id_images,
id_embeds=id_embeds,
ip_adapter_image=[style_images],
num_images_per_prompt=2,
start_merge_step=10,
).images
for idx, img in enumerate(images):
img.save(os.path.join(output_dir, f"output_pmv2_ipa_{idx}.jpg"))
# !pip install opencv-python transformers accelerate
import os
import sys
import numpy as np
import torch
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler, T2IAdapter
from huggingface_hub import hf_hub_download
from controlnet_aux import OpenposeDetector
from photomaker import PhotoMakerStableDiffusionXLAdapterPipeline
from photomaker import FaceAnalysis2, analyze_faces
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
try:
if torch.cuda.is_available():
device = "cuda"
elif sys.platform == "darwin" and torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
except:
device = "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
if device == "mps":
torch_dtype = torch.float16
output_dir = "./outputs"
os.makedirs(output_dir, exist_ok=True)
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
# load adapter
adapter = T2IAdapter.from_pretrained(
"TencentARC/t2i-adapter-openpose-sdxl-1.0", torch_dtype=torch_dtype,
).to("cuda")
prompt = "instagram photo, a photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain, best quality"
negative_prompt = "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth"
# download an image
pose_image = load_image(
"./examples/pos_ref.png"
)
pose_image = openpose(pose_image, detect_resolution=512, image_resolution=1024)
# initialize the models and pipeline
adapter_conditioning_scale = 0.8 # recommended for good generalization
adapter_conditioning_factor = 0.8
### Load base model
pipe = PhotoMakerStableDiffusionXLAdapterPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
adapter=adapter,
torch_dtype=torch_dtype,
).to("cuda")
### Load PhotoMaker checkpoint
pipe.load_photomaker_adapter(
os.path.dirname(photomaker_ckpt),
subfolder="",
weight_name=os.path.basename(photomaker_ckpt),
trigger_word="img" # define the trigger word
)
### Also can cooperate with other LoRA modules
# pipe.load_lora_weights(os.path.dirname(lora_path), weight_name=lora_model_name, adapter_name="lcm-lora")
# pipe.set_adapters(["photomaker", "lcm-lora"], adapter_weights=[1.0, 0.5])
pipe.fuse_lora()
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
### define the input ID images
input_folder_name = './examples/scarletthead_woman'
image_basename_list = os.listdir(input_folder_name)
image_path_list = sorted([os.path.join(input_folder_name, basename) for basename in image_basename_list])
input_id_images = []
for image_path in image_path_list:
input_id_images.append(load_image(image_path))
id_embed_list = []
for img in input_id_images:
img = np.array(img)
img = img[:, :, ::-1]
faces = analyze_faces(face_detector, img)
if len(faces) > 0:
id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))
if len(id_embed_list) == 0:
raise ValueError(f"No face detected in input image pool")
id_embeds = torch.stack(id_embed_list)
# generate image
images = pipe(
prompt,
negative_prompt=negative_prompt,
input_id_images=input_id_images,
id_embeds=id_embeds,
adapter_conditioning_scale=adapter_conditioning_scale,
image=pose_image,
num_images_per_prompt=2,
start_merge_step=10,
).images
for idx, img in enumerate(images):
img.save(os.path.join(output_dir, f"output_pmv2_t2ia_{idx}.jpg"))
from .model import PhotoMakerIDEncoder
from .model_v2 import PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken
from .resampler import FacePerceiverResampler
from .pipeline import PhotoMakerStableDiffusionXLPipeline
from .pipeline import PhotoMakerStableDiffusionXLPipeline
from .pipeline_controlnet import PhotoMakerStableDiffusionXLControlNetPipeline
from .pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
# InsightFace Package
from .insightface_package import FaceAnalysis2, analyze_faces
__all__ = [
"FaceAnalysis2",
"analyze_faces",
"FacePerceiverResampler",
"PhotoMakerIDEncoder",
"PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken",
"PhotoMakerStableDiffusionXLPipeline",
"PhotoMakerStableDiffusionXLControlNetPipeline",
"PhotoMakerStableDiffusionXLAdapterPipeline",
]
\ No newline at end of file
import numpy as np
# pip install insightface==0.7.3
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
###
# https://github.com/cubiq/ComfyUI_IPAdapter_plus/issues/165#issue-2055829543
###
class FaceAnalysis2(FaceAnalysis):
# NOTE: allows setting det_size for each detection call.
# the model allows it but the wrapping code from insightface
# doesn't show it, and people end up loading duplicate models
# for different sizes where there is absolutely no need to
def get(self, img, max_num=0, det_size=(640, 640)):
if det_size is not None:
self.det_model.input_size = det_size
return super().get(img, max_num)
def analyze_faces(face_analysis: FaceAnalysis, img_data: np.ndarray, det_size=(640, 640)):
# NOTE: try detect faces, if no faces detected, lower det_size until it does
detection_sizes = [None] + [(size, size) for size in range(640, 256, -64)] + [(256, 256)]
for size in detection_sizes:
faces = face_analysis.get(img_data, det_size=size)
if len(faces) > 0:
return faces
return []
# Merge image encoder and fuse module to create an ID Encoder
# send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding
import torch
import torch.nn as nn
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from transformers import PretrainedConfig
VISION_CONFIG_DICT = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class FuseModule(nn.Module):
def __init__(self, embed_dim):
super().__init__()
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False)
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True)
self.layer_norm = nn.LayerNorm(embed_dim)
def fuse_fn(self, prompt_embeds, id_embeds):
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
stacked_id_embeds = self.mlp2(stacked_id_embeds)
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
return stacked_id_embeds
def forward(
self,
prompt_embeds,
id_embeds,
class_tokens_mask,
) -> torch.Tensor:
# id_embeds shape: [b, max_num_inputs, 1, 2048]
id_embeds = id_embeds.to(prompt_embeds.dtype)
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
batch_size, max_num_inputs = id_embeds.shape[:2]
# seq_length: 77
seq_length = prompt_embeds.shape[1]
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
flat_id_embeds = id_embeds.view(
-1, id_embeds.shape[-2], id_embeds.shape[-1]
)
# valid_id_mask [b*max_num_inputs]
valid_id_mask = (
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
< num_inputs[:, None]
)
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
class_tokens_mask = class_tokens_mask.view(-1)
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
# slice out the image token embeddings
image_token_embeds = prompt_embeds[class_tokens_mask]
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
return updated_prompt_embeds
class PhotoMakerIDEncoder(CLIPVisionModelWithProjection):
def __init__(self):
super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT))
self.visual_projection_2 = nn.Linear(1024, 1280, bias=False)
self.fuse_module = FuseModule(2048)
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
shared_id_embeds = self.vision_model(id_pixel_values)[1]
id_embeds = self.visual_projection(shared_id_embeds)
id_embeds_2 = self.visual_projection_2(shared_id_embeds)
id_embeds = id_embeds.view(b, num_inputs, 1, -1)
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
return updated_prompt_embeds
if __name__ == "__main__":
PhotoMakerIDEncoder()
\ No newline at end of file
# Merge image encoder and fuse module to create an ID Encoder
# send multiple ID images, we can directly obtain the updated text encoder containing a stacked ID embedding
import torch
import torch.nn as nn
from transformers.models.clip.modeling_clip import CLIPVisionModelWithProjection
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from .resampler import FacePerceiverResampler
VISION_CONFIG_DICT = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768
}
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = nn.LayerNorm(in_dim)
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, out_dim)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class QFormerPerceiver(nn.Module):
def __init__(self, id_embeddings_dim, cross_attention_dim, num_tokens, embedding_dim=1024, use_residual=True, ratio=4):
super().__init__()
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.use_residual = use_residual
print(cross_attention_dim*num_tokens)
self.token_proj = nn.Sequential(
nn.Linear(id_embeddings_dim, id_embeddings_dim*ratio),
nn.GELU(),
nn.Linear(id_embeddings_dim*ratio, cross_attention_dim*num_tokens),
)
self.token_norm = nn.LayerNorm(cross_attention_dim)
self.perceiver_resampler = FacePerceiverResampler(
dim=cross_attention_dim,
depth=4,
dim_head=128,
heads=cross_attention_dim // 128,
embedding_dim=embedding_dim,
output_dim=cross_attention_dim,
ff_mult=4,
)
def forward(self, x, last_hidden_state):
x = self.token_proj(x)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
x = self.token_norm(x) # cls token
out = self.perceiver_resampler(x, last_hidden_state) # retrieve from patch tokens
if self.use_residual: # TODO: if use_residual is not true
out = x + 1.0 * out
return out
class FuseModule(nn.Module):
def __init__(self, embed_dim):
super().__init__()
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False)
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True)
self.layer_norm = nn.LayerNorm(embed_dim)
def fuse_fn(self, prompt_embeds, id_embeds):
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
stacked_id_embeds = self.mlp2(stacked_id_embeds)
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
return stacked_id_embeds
def forward(
self,
prompt_embeds,
id_embeds,
class_tokens_mask,
) -> torch.Tensor:
# id_embeds shape: [b, max_num_inputs, 1, 2048]
id_embeds = id_embeds.to(prompt_embeds.dtype)
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
batch_size, max_num_inputs = id_embeds.shape[:2]
# seq_length: 77
seq_length = prompt_embeds.shape[1]
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
flat_id_embeds = id_embeds.view(
-1, id_embeds.shape[-2], id_embeds.shape[-1]
)
# valid_id_mask [b*max_num_inputs]
valid_id_mask = (
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
< num_inputs[:, None]
)
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
class_tokens_mask = class_tokens_mask.view(-1)
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
# slice out the image token embeddings
image_token_embeds = prompt_embeds[class_tokens_mask]
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
return updated_prompt_embeds
class PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken(CLIPVisionModelWithProjection):
def __init__(self, id_embeddings_dim=512):
super().__init__(CLIPVisionConfig(**VISION_CONFIG_DICT))
self.fuse_module = FuseModule(2048)
self.visual_projection_2 = nn.Linear(1024, 1280, bias=False)
cross_attention_dim = 2048
# projection
self.num_tokens = 2
self.cross_attention_dim = cross_attention_dim
self.qformer_perceiver = QFormerPerceiver(
id_embeddings_dim,
cross_attention_dim,
self.num_tokens,
)
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask, id_embeds):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
last_hidden_state = self.vision_model(id_pixel_values)[0]
id_embeds = id_embeds.view(b * num_inputs, -1)
id_embeds = self.qformer_perceiver(id_embeds, last_hidden_state)
id_embeds = id_embeds.view(b, num_inputs, self.num_tokens, -1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
return updated_prompt_embeds
if __name__ == "__main__":
PhotoMakerIDEncoder_CLIPInsightfaceExtendtoken()
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
#### Borrowed from https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/resampler.py
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
# and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
import math
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
class FacePerceiverResampler(torch.nn.Module):
def __init__(
self,
*,
dim=768,
depth=4,
dim_head=64,
heads=16,
embedding_dim=1280,
output_dim=768,
ff_mult=4,
):
super().__init__()
self.proj_in = torch.nn.Linear(embedding_dim, dim)
self.proj_out = torch.nn.Linear(dim, output_dim)
self.norm_out = torch.nn.LayerNorm(output_dim)
self.layers = torch.nn.ModuleList([])
for _ in range(depth):
self.layers.append(
torch.nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, latents, x):
x = self.proj_in(x)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
# FFN
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
def reshape_tensor(x, heads):
bs, length, width = x.shape
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, length, heads, -1)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs, heads, length, -1)
return x
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.dim_head = dim_head
self.heads = heads
inner_dim = dim_head * heads
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, n1, D)
latent (torch.Tensor): latent features
shape (b, n2, D)
"""
x = self.norm1(x)
latents = self.norm2(latents)
b, l, _ = latents.shape
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q = reshape_tensor(q, self.heads)
k = reshape_tensor(k, self.heads)
v = reshape_tensor(v, self.heads)
# attention
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
out = weight @ v
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
return self.to_out(out)
class Resampler(nn.Module):
def __init__(
self,
dim=1024,
depth=8,
dim_head=64,
heads=16,
num_queries=8,
embedding_dim=768,
output_dim=1024,
ff_mult=4,
max_seq_len: int = 257, # CLIP tokens + CLS token
apply_pos_emb: bool = False,
num_latents_mean_pooled: int = 0, # number of latents derived from mean pooled representation of the sequence
):
super().__init__()
self.pos_emb = nn.Embedding(max_seq_len, embedding_dim) if apply_pos_emb else None
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
self.proj_in = nn.Linear(embedding_dim, dim)
self.proj_out = nn.Linear(dim, output_dim)
self.norm_out = nn.LayerNorm(output_dim)
self.to_latents_from_mean_pooled_seq = (
nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim * num_latents_mean_pooled),
Rearrange("b (n d) -> b n d", n=num_latents_mean_pooled),
)
if num_latents_mean_pooled > 0
else None
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
def forward(self, x):
if self.pos_emb is not None:
n, device = x.shape[1], x.device
pos_emb = self.pos_emb(torch.arange(n, device=device))
x = x + pos_emb
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
if self.to_latents_from_mean_pooled_seq:
meanpooled_seq = masked_mean(x, dim=1, mask=torch.ones(x.shape[:2], device=x.device, dtype=torch.bool))
meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq)
latents = torch.cat((meanpooled_latents, latents), dim=-2)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
latents = self.proj_out(latents)
return self.norm_out(latents)
def masked_mean(t, *, dim, mask=None):
if mask is None:
return t.mean(dim=dim)
denom = mask.sum(dim=dim, keepdim=True)
mask = rearrange(mask, "b n -> b n 1")
masked_t = t.masked_fill(~mask, 0.0)
return masked_t.sum(dim=dim) / denom.clamp(min=1e-5)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment