command: - python3 - ${program} - --fp16 - --fp16_full_eval - --do_train - --do_eval - --trust_remote_code - --overwrite_output_dir - --ignore_mismatched_sizes - --gradient_checkpointing - ${args} method: random metric: goal: maximize name: eval/accuracy parameters: model_name_or_path: value: facebook/mms-lid-126 train_dataset_name: value: stable-speech/concatenated-normalized-accent-dataset train_dataset_config_name: value: default train_split_name: value: train train_label_column_name: value: labels eval_dataset_name: value: stable-speech/concatenated-normalized-accent-dataset eval_dataset_config_name: value: default eval_split_name: value: test eval_label_column_name: value: labels output_dir: value: ./ remove_unused_columns: value: false learning_rate: value: 1e-4 lr_scheduler_type: value: constant_with_warmup max_length_seconds: value: 20 min_length_seconds: value: 5 attention_mask: value: true warmup_steps: value: 50 max_steps: value: 1000 per_device_train_batch_size: value: 32 per_device_eval_batch_size: value: 32 preprocessing_num_workers: value: 4 dataloader_num_workers: value: 4 logging_strategy: value: steps logging_steps: value: 10 evaluation_strategy: value: steps eval_steps: value: 1000 save_strategy: value: steps save_steps: value: 1000 freeze_base_model: values: - false - true push_to_hub: value: false filter_threshold: value: 1 feat_proj_dropout: values: - 0.0 - 0.1 - 0.2 attention_dropout: values: - 0.0 - 0.1 - 0.2 activation_dropout: values: - 0.0 - 0.1 - 0.2 hidden_dropout: values: - 0.0 - 0.1 - 0.2 final_dropout: values: - 0.0 - 0.1 - 0.2 mask_time_prob: values: - 0.0 - 0.1 - 0.2 mask_time_length: values: - 10 - 15 - 20 mask_feature_prob: values: - 0.0 - 0.1 - 0.2 mask_feature_length: values: - 10 - 15 - 20 program: run_audio_classification.py project: mms-lid-accent-classification