Commit e7cc576a authored by Yoach Lacombe's avatar Yoach Lacombe
Browse files

add dac config, init, and temporary datasets saving

parent 9bde9933
...@@ -63,7 +63,7 @@ ...@@ -63,7 +63,7 @@
"evaluation_strategy": "steps", "evaluation_strategy": "steps",
"eval_steps": 600, "eval_steps": 600,
"per_device_eval_batch_size": 8, "per_device_eval_batch_size": 8,
"generation_max_length": 400, "generation_max_length": 2250,
"fp16": false, "fp16": false,
"seed": 456, "seed": 456,
......
{ {
"model_name_or_path": "/raid/yoach/tmp/artefacts/small-stable-speech-untrained/", "model_name_or_path": "/raid/yoach/tmp/artefacts/small-stable-speech-untrained/",
"feature_extractor_name":"facebook/encodec_24khz", "feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
"description_tokenizer_name":"google-t5/t5-small", "description_tokenizer_name":"google-t5/t5-small",
"prompt_tokenizer_name":"google-t5/t5-small", "prompt_tokenizer_name":"google-t5/t5-small",
"push_to_hub": true, "push_to_hub": false,
"hub_model_id": "ylacombe/stable-speech-mini", "hub_model_id": "ylacombe/stable-speech-mini",
"report_to": ["wandb"], "report_to": ["wandb"],
"overwrite_output_dir": true, "overwrite_output_dir": false,
"output_dir": "/raid/yoach/tmp/artefacts/training-mini/", "output_dir": "/raid/yoach/tmp/artefacts/training-mini/",
...@@ -34,7 +34,7 @@ ...@@ -34,7 +34,7 @@
"add_audio_samples_to_wandb": true, "add_audio_samples_to_wandb": true,
"id_column_name": "id", "id_column_name": "id",
"preprocessing_num_workers": 1, "preprocessing_num_workers": 8,
"pad_token_id": 1024, "pad_token_id": 1024,
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
"num_train_epochs": 15, "num_train_epochs": 15,
"gradient_accumulation_steps": 1, "gradient_accumulation_steps": 1,
"gradient_checkpointing": true, "gradient_checkpointing": true,
"per_device_train_batch_size": 40, "per_device_train_batch_size": 28,
"learning_rate": 1e-4, "learning_rate": 1e-4,
"adam_beta1": 0.9, "adam_beta1": 0.9,
"adam_beta2": 0.999, "adam_beta2": 0.999,
...@@ -63,11 +63,10 @@ ...@@ -63,11 +63,10 @@
"predict_with_generate": true, "predict_with_generate": true,
"include_inputs_for_metrics": true, "include_inputs_for_metrics": true,
"evaluation_strategy": "steps", "evaluation_strategy": "steps",
"eval_steps": 3000, "eval_steps": 2500,
"save_steps": 3000, "save_steps": 2499,
"per_device_eval_batch_size": 8, "per_device_eval_batch_size": 8,
"generation_max_length": 400,
"audio_encode_per_device_eval_batch_size":32, "audio_encode_per_device_eval_batch_size":32,
"dtype": "float16", "dtype": "float16",
......
{
"model_name_or_path": "/raid/yoach/tmp/artefacts/stable-speech-untrained-75M/",
"save_to_disk": "/raid/yoach/tmp/artefacts/libritts_r_1k_hours_processed/",
"preprocessing_only": false,
"feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
"description_tokenizer_name":"google/t5-v1_1-small",
"prompt_tokenizer_name":"google/t5-v1_1-small",
"push_to_hub": false,
"hub_model_id": "ylacombe/stable-speech-75M",
"report_to": ["wandb"],
"overwrite_output_dir": false,
"output_dir": "/raid/yoach/tmp/artefacts/training-75M-0.1/",
"train_dataset_name": "blabble-io/libritts_r+blabble-io/libritts_r+blabble-io/libritts_r",
"train_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated",
"train_dataset_config_name": "clean+clean+other",
"train_split_name": "train.clean.360+train.clean.100+train.other.500",
"eval_dataset_name": "blabble-io/libritts_r+blabble-io/libritts_r",
"eval_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated+stable-speech/libritts-r-tags-and-text-generated",
"eval_dataset_config_name": "clean+other",
"eval_split_name": "test.clean+test.other",
"target_audio_column_name": "audio",
"description_column_name": "text_description",
"prompt_column_name": "text",
"max_eval_samples": 24,
"max_duration_in_seconds": 35,
"min_duration_in_seconds": 2.0,
"add_audio_samples_to_wandb": true,
"id_column_name": "id",
"preprocessing_num_workers": 16,
"pad_token_id": 1024,
"decoder_start_token_id": 1025,
"do_train": true,
"num_train_epochs": 1,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": true,
"per_device_train_batch_size": 28,
"learning_rate": 1e-4,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"weight_decay": 0.03,
"lr_scheduler_type": "constant_with_warmup",
"warmup_steps": 5000,
"logging_steps": 102,
"freeze_text_encoder": true,
"do_eval": true,
"predict_with_generate": true,
"include_inputs_for_metrics": true,
"evaluation_strategy": "steps",
"eval_steps": 2500,
"save_steps": 2499,
"per_device_eval_batch_size": 1,
"audio_encode_per_device_eval_batch_size":24,
"dtype": "bfloat16",
"seed": 456,
"dataloader_num_workers":16
}
{
"model_name_or_path": "/raid/yoach/tmp/artefacts/tiny-dac-model/",
"save_to_disk": "/raid/yoach/tmp/artefacts/small_experiment_dataset/",
"feature_extractor_name":"ylacombe/dac_44khZ_8kbps",
"description_tokenizer_name":"google-t5/t5-small",
"prompt_tokenizer_name":"google-t5/t5-small",
"push_to_hub": false,
"hub_model_id": "stable-speech-mini",
"report_to": ["wandb"],
"overwrite_output_dir": true,
"output_dir": "/raid/yoach/tmp/artefacts/training/",
"train_dataset_name": "blabble-io/libritts_r",
"train_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated",
"train_dataset_config_name": "clean",
"train_split_name": "train.clean.360",
"eval_dataset_name": "blabble-io/libritts_r",
"eval_metadata_dataset_name": "stable-speech/libritts-r-tags-and-text-generated",
"eval_dataset_config_name": "clean",
"eval_split_name": "train.clean.360",
"target_audio_column_name": "audio",
"description_column_name": "text_description",
"prompt_column_name": "text",
"max_train_samples": 4,
"max_eval_samples": 4,
"max_duration_in_seconds": 30,
"min_duration_in_seconds": 1.0,
"add_audio_samples_to_wandb": true,
"id_column_name": "id",
"preprocessing_num_workers": 1,
"pad_token_id": 1024,
"decoder_start_token_id": 1025,
"do_train": true,
"num_train_epochs": 180,
"gradient_accumulation_steps": 1,
"gradient_checkpointing": false,
"per_device_train_batch_size": 2,
"learning_rate": 1e-3,
"adam_beta1": 0.9,
"adam_beta2": 0.999,
"weight_decay": 0.1,
"lr_scheduler_type": "cosine",
"warmup_ratio": 0.1,
"freeze_text_encoder": true,
"do_eval": true,
"predict_with_generate": true,
"include_inputs_for_metrics": true,
"evaluation_strategy": "steps",
"eval_steps": 30,
"per_device_eval_batch_size": 2,
"generation_max_length": 800,
"do_sample": false,
"logging_steps": 15,
"dtype": "float32",
"seed": 456,
"dataloader_num_workers":8
}
from stable_speech import StableSpeechConfig, StableSpeechForCausalLM, StableSpeechForConditionalGeneration, StableSpeechDecoderConfig
from transformers import AutoConfig
from transformers import AutoModel
from transformers import AutoConfig, AutoModel
from stable_speech import DACConfig, DACModel
AutoConfig.register("dac", DACConfig)
AutoModel.register(DACConfig, DACModel)
text_model = "google-t5/t5-small"
encodec_version = "ylacombe/dac_44khZ_8kbps"
num_codebooks = 9
t5 = AutoConfig.from_pretrained(text_model)
encodec = AutoConfig.from_pretrained(encodec_version)
encodec_vocab_size = encodec.codebook_size
decoder_config = StableSpeechDecoderConfig(
vocab_size=encodec_vocab_size+1,
max_position_embeddings=2048,
num_hidden_layers=4,
ffn_dim=512,
num_attention_heads=8,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=512,
dropout=0.0,
attention_dropout=0.0,
activation_dropout=0.0,
pad_token_id=encodec_vocab_size,
eos_token_id=encodec_vocab_size,
bos_token_id=encodec_vocab_size+1,
num_codebooks=num_codebooks,
)
# TODO: ?? how to make it stop ?
decoder = StableSpeechForCausalLM(decoder_config)
decoder.save_pretrained("/raid/yoach/tmp/artefacts/decoder/")
model = StableSpeechForConditionalGeneration.from_sub_models_pretrained(
text_encoder_pretrained_model_name_or_path=text_model,
audio_encoder_pretrained_model_name_or_path=encodec_version,
decoder_pretrained_model_name_or_path="/raid/yoach/tmp/artefacts/decoder/",
vocab_size = t5.vocab_size
)
# set the appropriate bos/pad token ids
model.generation_config.decoder_start_token_id = encodec_vocab_size+1
model.generation_config.pad_token_id = encodec_vocab_size
model.generation_config.eos_token_id = encodec_vocab_size
# set other default generation config params
model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
model.generation_config.do_sample = False # True
model.generation_config.guidance_scale = 1 # 3.0
model.save_pretrained("/raid/yoach/tmp/artefacts/tiny-dac-model/")
\ No newline at end of file
...@@ -3,9 +3,15 @@ from transformers import T5Config, EncodecConfig ...@@ -3,9 +3,15 @@ from transformers import T5Config, EncodecConfig
from transformers import AutoConfig from transformers import AutoConfig
from transformers import AutoConfig, AutoModel
from stable_speech import DACConfig, DACModel
AutoConfig.register("dac", DACConfig)
AutoModel.register(DACConfig, DACModel)
text_model = "google-t5/t5-small" text_model = "google-t5/t5-small"
encodec_version = "facebook/encodec_24khz" encodec_version = "ylacombe/dac_44khZ_8kbps"
num_codebooks = 8 num_codebooks = 9
t5 = AutoConfig.from_pretrained(text_model) t5 = AutoConfig.from_pretrained(text_model)
...@@ -16,7 +22,7 @@ encodec_vocab_size = encodec.codebook_size ...@@ -16,7 +22,7 @@ encodec_vocab_size = encodec.codebook_size
decoder_config = StableSpeechDecoderConfig( decoder_config = StableSpeechDecoderConfig(
vocab_size=encodec_vocab_size+1, vocab_size=encodec_vocab_size+1,
max_position_embeddings=2250, # 30 s max_position_embeddings=3000, # 30 s = 2580
num_hidden_layers=12, num_hidden_layers=12,
ffn_dim=4096, ffn_dim=4096,
num_attention_heads=16, num_attention_heads=16,
......
from stable_speech import StableSpeechConfig, StableSpeechForCausalLM, StableSpeechForConditionalGeneration, StableSpeechDecoderConfig
from transformers import T5Config, EncodecConfig
from transformers import AutoConfig
from transformers import AutoConfig, AutoModel
from stable_speech import DACConfig, DACModel
AutoConfig.register("dac", DACConfig)
AutoModel.register(DACConfig, DACModel)
text_model = "google/t5-v1_1-small"
encodec_version = "ylacombe/dac_44khZ_8kbps"
num_codebooks = 9
t5 = AutoConfig.from_pretrained(text_model)
encodec = AutoConfig.from_pretrained(encodec_version)
encodec_vocab_size = encodec.codebook_size
decoder_config = StableSpeechDecoderConfig(
vocab_size=encodec_vocab_size+1,
max_position_embeddings=4096, # 30 s = 2580
num_hidden_layers=8,
ffn_dim=3072,
num_attention_heads=12,
layerdrop=0.0,
use_cache=True,
activation_function="gelu",
hidden_size=768,
dropout=0.0,
attention_dropout=0.0,
activation_dropout=0.0,
pad_token_id=encodec_vocab_size,
eos_token_id=encodec_vocab_size,
bos_token_id=encodec_vocab_size+1,
num_codebooks=num_codebooks,
)
decoder = StableSpeechForCausalLM(decoder_config)
decoder.save_pretrained("/raid/yoach/tmp/artefacts/decoder_small/")
model = StableSpeechForConditionalGeneration.from_sub_models_pretrained(
text_encoder_pretrained_model_name_or_path=text_model,
audio_encoder_pretrained_model_name_or_path=encodec_version,
decoder_pretrained_model_name_or_path="/raid/yoach/tmp/artefacts/decoder_small/",
vocab_size = t5.vocab_size
)
# set the appropriate bos/pad token ids
model.generation_config.decoder_start_token_id = encodec_vocab_size+1
model.generation_config.pad_token_id = encodec_vocab_size
model.generation_config.eos_token_id = encodec_vocab_size
# set other default generation config params
model.generation_config.max_length = int(30 * model.audio_encoder.config.frame_rate)
model.generation_config.do_sample = False # True
model.generation_config.guidance_scale = 1 # 3.0
model.save_pretrained("/raid/yoach/tmp/artefacts/stable-speech-untrained-75M/")
\ No newline at end of file
...@@ -397,7 +397,8 @@ class DataTrainingArguments: ...@@ -397,7 +397,8 @@ class DataTrainingArguments:
"Whether to only do data preprocessing and skip training. This is especially useful when data" "Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training" " can consequently be loaded in distributed training."
" In this training script, `save_to_disk` must be set to the path in which the dataset should be saved. "
) )
}, },
) )
...@@ -442,6 +443,12 @@ class DataTrainingArguments: ...@@ -442,6 +443,12 @@ class DataTrainingArguments:
default="stable-speech", default="stable-speech",
metadata={"help": "The name of the wandb project."}, metadata={"help": "The name of the wandb project."},
) )
save_to_disk: str = field(
default=None,
metadata={
"help": "If set, will save the dataset to this path if this is an empyt folder. If not empty, will load the datasets from it."
}
)
@dataclass @dataclass
class StableSpeechTrainingArguments(Seq2SeqTrainingArguments): class StableSpeechTrainingArguments(Seq2SeqTrainingArguments):
...@@ -781,10 +788,19 @@ def main(): ...@@ -781,10 +788,19 @@ def main():
# Set seed before initializing model. # Set seed before initializing model.
set_seed(training_args.seed) set_seed(training_args.seed)
num_workers = data_args.preprocessing_num_workers
# 1. First, let's load the dataset # 1. First, let's load the dataset
if data_args.save_to_disk is not None:
os.makedirs(data_args.save_to_disk, exist_ok=True)
# assume that the dataset has been saved to `save_to_disk` if the latter is not empty
dataset_was_precomputed = len(os.listdir(data_args.save_to_disk)) > 0
if dataset_was_precomputed:
vectorized_datasets = datasets.load_from_disk(data_args.save_to_disk)
else:
raw_datasets = DatasetDict() raw_datasets = DatasetDict()
num_workers = data_args.preprocessing_num_workers
columns_to_keep = { columns_to_keep = {
"target_audio_column_name": data_args.target_audio_column_name, "target_audio_column_name": data_args.target_audio_column_name,
...@@ -921,6 +937,7 @@ def main(): ...@@ -921,6 +937,7 @@ def main():
num_codebooks = model.decoder.config.num_codebooks num_codebooks = model.decoder.config.num_codebooks
bandwidth = model_args.bandwidth bandwidth = model_args.bandwidth
if not dataset_was_precomputed:
# resample target audio # resample target audio
raw_datasets = raw_datasets.cast_column( raw_datasets = raw_datasets.cast_column(
target_audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate) target_audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
...@@ -966,7 +983,6 @@ def main(): ...@@ -966,7 +983,6 @@ def main():
input_columns=["target_length"], input_columns=["target_length"],
) )
# 5. Now we encode the audio labels with encodec. # 5. Now we encode the audio labels with encodec.
# We use Accelerate to perform distributed inference # We use Accelerate to perform distributed inference
...@@ -1054,7 +1070,7 @@ def main(): ...@@ -1054,7 +1070,7 @@ def main():
with accelerator.main_process_first(): with accelerator.main_process_first():
vectorized_datasets[split] = vectorized_datasets[split].map( vectorized_datasets[split] = vectorized_datasets[split].map(
postprocess_dataset, postprocess_dataset,
num_proc=num_workers, num_proc=1, # this one is resource consuming if many processor.
input_columns=["input_ids", "prompt_input_ids"], input_columns=["input_ids", "prompt_input_ids"],
desc="Postprocessing labeling", desc="Postprocessing labeling",
with_indices=True, with_indices=True,
...@@ -1066,15 +1082,19 @@ def main(): ...@@ -1066,15 +1082,19 @@ def main():
del generate_labels del generate_labels
if data_args.save_to_disk is not None and not dataset_was_precomputed:
vectorized_datasets.save_to_disk(data_args.save_to_disk)
logger.info(f"Dataset saved at {data_args.save_to_disk}")
# for large datasets it is advised to run the preprocessing on a # for large datasets it is advised to run the preprocessing on a
# single machine first with ``args.preprocessing_only`` since there will mostly likely # single machine first with ``args.preprocessing_only`` since there will mostly likely
# be a timeout when running the script in distributed mode. # be a timeout when running the script in distributed mode.
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
# cached dataset # cached dataset
if data_args.preprocessing_only: if data_args.preprocessing_only and data_args.save_to_disk is None:
# TODO: save to disk in this step instead of something else ?? raise ValueError("`preprocessing_only=True` but `save_to_disk` is not set. The latter should indicates where to save the dataset locally.")
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") elif data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files save at {data_args.save_to_disk}")
return return
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment